DOI QR코드

DOI QR Code

Activation of a Ca2+ wave by Shear Stress in Atrial Myocytes: Role of Phospholipase C-inositol 1,4,5-Trisphosphate Receptor Signaling

전단 자극에 의한 심방 근세포 칼슘 웨이브의 발생: Phospholipase C-이노시톨 1,4,5-삼인산 수용체 신호전달의 역할

  • Received : 2015.05.24
  • Accepted : 2015.06.08
  • Published : 2015.08.30

Abstract

Cardiac myocytes are subjected to fluid shear stress during each contraction and relaxation. Under pathological conditions, such as valve disease, heart failure or hypertension, shear stress in cardiac chamber increases due to high blood volume and pressure. The shear stress induces proarrhythmic longitudinal global $Ca^{2+}$ waves in atrial myocytes. In the present study, we further explored underlying cellular mechanism for the shear stress-induced longitudinal global $Ca^{2+}$ wave in isolated rat atrial myocytes. A shear stress of ${\sim}16dyn/cm^2$ was applied onto entire single myocyte using pressurized fluid puffing. Confocal $Ca^{2+}$ imaging was performed to measure local and global $Ca^{2+}$ signals. Shear stress elicited longitudinally propagating global $Ca^{2+}$ wave (${\sim}80{\mu}m/s$). The occurrence of shear stress-induced atrial $Ca^{2+}$ wave was eliminated by the inhibition of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors ($IP_3Rs$). In addition, pretreatment of phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the generation of longitudinal $Ca^{2+}$ wave under shear stress. Our data suggest that shear-induced longitudinal $Ca^{2+}$ wave may be induced by $Ca^{2+}$-induced $Ca^{2+}$ release through the RyRs which is triggered by $PLC-IP_3R$ signaling in atrial myocytes.

Keywords

References

  1. Lab, M. J. : Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc. Res. 32, 3 (1996). https://doi.org/10.1016/0008-6363(96)00088-0
  2. Nazir, S. A. and Lab, M. J. : Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 32, 52 (1996). https://doi.org/10.1016/0008-6363(96)00054-5
  3. Nattel, S. : New ideas about atrial fibrillation 50 years on. Nature 415, 219 (2002). https://doi.org/10.1038/415219a
  4. Hagiwara, N., Masuda, H., Shoda, M. and Irisawa, H. : Stretch-activated anion currents of rabbit cardiac myocytes. J. Physiol. 456, 285 (1992). https://doi.org/10.1113/jphysiol.1992.sp019337
  5. Sato, R. and Koumi, S.-i. : Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. J. Membrane. Biol. 163, 67 (1998). https://doi.org/10.1007/s002329900371
  6. Tavi, P., Han, C. and Weckstrom, M. : Mechanisms of stretch-induced changes in $[Ca^{2+}]_i$ in rat atrial myocytes. Circ. Res. 83, 1165 (1998). https://doi.org/10.1161/01.RES.83.11.1165
  7. Zhang, Y. H., Youm, J. B., Sung, H. K., Lee, S. H., Ryu, S. Y., Lee, S.-H., Ho, W.-K. and Earm, Y. E. : Stretch-activated and background non-selective cation channels in rat atrial myocytes. J. Physiol. 523 607 (2000). https://doi.org/10.1111/j.1469-7793.2000.00607.x
  8. Kamkin, A., Kiseleva, I., Wagner, K.-D., Bohm, J., Theres, H., Gunther, J. and Scholz, H. : Characteristics of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers. Arch. Eu. J. Physiol. 446, 339 (2003). https://doi.org/10.1007/s00424-002-0948-0
  9. LeGrice, I. J., Takayama, Y. and Covell, J. W. : Transverse shear along myocardiac cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77, 182 (1995). https://doi.org/10.1161/01.RES.77.1.182
  10. Costa, K. D., Takayama, Y., McCuloch, A. D. and Covell, J. W. : Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. 276, H595 (1999).
  11. Woo, S.-H., Risius, T. and Morad, M : Modulation of local $Ca^{2+}$ release sites by rapid puffing in rat atrial myocytes. Cell Calcium 41, 397 (2007). https://doi.org/10.1016/j.ceca.2006.09.005
  12. Lee, S., Kim, J.-C., Li, Y., Son, M.-J. and Woo, S.-H. : Fluid pressure modulates L-type $Ca^{2+}$ channel via enhancement of $Ca^{2+}$-induced $Ca^{2+}$ release in rat ventricular myocytes. Am. J. Physiol. Cell. Physiol. 294, C966 (2008). https://doi.org/10.1152/ajpcell.00381.2007
  13. Boycott, H. E., Barbier, C. S. M., Eichel, C. A., Costa, K. D., Martins, R. P., Louault, F., Dilanian, G., Coulombe, A., Hatem, S. N. and Balse, E. : Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc. Natl. Acad. Sci. U.S.A. 110(41), E3955-E3964 (2013). https://doi.org/10.1073/pnas.1309896110
  14. Olesen, S.-P., Clapham, D. E. and Davies, P. F. : Hemodynamic shear stress activates a $K^+$ current in vascular endothelial cells. Nature 331, 168 (1988). https://doi.org/10.1038/331168a0
  15. Kim, J.-C., Wang, J., Son, M.-J., Cuong, N. M. and Woo S.-H. : Sensitization of cardiac $Ca^{2+}$ release sites by protein kinase C signaling: evidence from action of murrayafoline A. Pflugers. Arch. Eu. J. Physiol. in press (2014).
  16. Woo, S.-H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439 (2002). https://doi.org/10.1113/jphysiol.2002.024190
  17. Lipp, P., Laine, M., Tovey, S. C., Burrell, K. M., Berridge, M. J., Li, W. and Bootman, M. D. : Functional $InsP_3$ receptors that may modulate excitation-contraction coupling in the heart. Curr. Biol. 10, 939 (2000). https://doi.org/10.1016/S0960-9822(00)00624-2
  18. Mackenzie, L., Bootman, M. D., Laine, M., Berridge, M. J., Thuring, J., Holmes, A., Li, W. H. and Lipp, P. : The role of inositol 1,4,5-trisphosphate receptors in $Ca^{2+}$ signalling and the generation of arrhythmias in rat atrial myocytes. J. Physiol. 541, 395 (2002). https://doi.org/10.1113/jphysiol.2001.013411
  19. Gyorke, S., Lukyanenko, V. and Gyorke, I. : Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J. Physiol. 500, 297 (1997). https://doi.org/10.1113/jphysiol.1997.sp022021