• Title/Summary/Keyword: Myocytes

Search Result 182, Processing Time 0.03 seconds

Effects of Arachidonic Acid on the Calcium Channel Current $(I_{Ba})$ and on the Osmotic Stretch-induced Increase of $I_{Ba}$ in Guinea-Pig Gastric Myocytes

  • Xu, Wen-Xie;Kim, Sung-Joon;So, In-Suk;Suh, Suk-Hyo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.435-443
    • /
    • 1997
  • We employed the whole-cell patch clamp technique to investigate the effects of arachidonic acid (AA) on barium inward current through the L-type calcium channels ($I_{Ba}$) and on osmotic stretch-induced increase of $I_{Ba}$ in guinea-pig antral gastric myocytes. Under isosmotic condition, AA inhibited $I_{Ba}$ in a dose-dependent manner to $91.1{\pm}1.4,\;72.0{\pm}3.2,\;46.0{\pm}1.8,\;and\;20.3{\pm}2.3%$ at 1, 5, 10, 30 mM, respectively. The inhibitory effect of AA was not affected by 10 ${\mu}M$ indomethacin, a cyclooxygenase inhibitor. Other unsaturated fatty acids, linoleic acid (LA) and oleic acid (OA) were also found to suppress $I_{Ba}$ but stearic acid (SA), a saturated fatty acid, had no inhibitory effect on $I_{Ba}$. The potency sequence of these inhibitory effects was AA ($79.7{\pm}2.3%$) > LA ($43.1{\pm}2.7%$) > OA ($14.2{\pm}1.1%$) at 30 ${\mu}M$. On superfusing the myocyte with hyposmotic solution (214 mOsm) the amplitude of $I_{Ba}$ at 0 mV increased ($38.0{\pm}5.5%$); this increase was completely blocked by pretreatment with 30 mM AA, but not significantly inhibited by lower concentrations of AA (1, 5 and 10 ${\mu}M$) (P>0.05). Unsaturated fatty acids shifted the steady-state inactivation curves of $I_{Ba}$ to the left; the extent of shift caused by AA was greater than that caused by LA. The activation curve was not affected by AA or LA. The results suggest that AA and other unsaturated fatty acids directly modulate L-type calcium channels and AA might modulate the hyposmotic stretch- induced increase of L-type calcium channel current in guinea-pig gastric smooth muscle.

  • PDF

An antiarrhythmic drug for atrial fibrillation from Chelidonium majus

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Yong-Geun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.126.2-127
    • /
    • 2003
  • The therapeutic potential of currently available antiarrhythmic drugs is limited by their tendency to induce proarrhythmic and extracardiac side effects. An ideal antiarrhythmic agent would selectively prolong the action potential duration more in extraordinarily depolarized cardiac myocytes than in normal cells. and show tissue selectivity. Voltage-gated K+ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. (omitted)

  • PDF

Modeling the Cardiac Na+/H+ Exchanger Based on Major Experimental Findings

  • Cha, Chae Young;Noma, Akinori
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • $Na^+-H^+$ exchanger (NHE) is the main acid extruder in cardiac myocytes. We review the experimental findings of ion-dependency of NHE activity, and the mathematical modeling developed so far. In spite of extensive investigation, many unsolved questions still remain. We consider that the precise description of NHE activity with mathematical models elucidates the roles of NHE in maintaining ionic homeostasis, especially under pathophysiological conditions.

$Na^+-K^+$ ATPase: Regulation by Signal Transduction Pathways in Cardiac Myocytes

  • Lee, Chin-Ok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.9-11
    • /
    • 2002
  • Plasma membrane Na$^{+}$-K$^{+}$ ATPase (pump) is an essential component to maintain asymmetrical ion distribution across cell membrane. The Na$^{+}$-K$^{+}$ ATPase was discovered by Jens C. Skou in 1957 and since then physiological and biochemical properties of the enzyme have been extensively studied. Jens C. Skou was awarded the 1997 Nobel Prize in chemistry for his discovery of the Na $^{+}$ - $K^{+}$ ATPase.(omitted)

  • PDF

The Role of PLC $\beta1$ in Desensitization of Acetycholine Activated $K^+$ Currents in Mouse Atrial Myocytes

  • Hana Cho;Ho, Won-Kyung;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.66-66
    • /
    • 1999
  • The negative chronotropic effect of ACh on heart fades in the continuous presence of ACh, which is known as a phenomenon called "vagal escape". The underlying mechanism of vagal escape is not entirely clear, but desensitization of acetylcholine-activated $K^{+}$ currents ($K_{ACh}$) was suggested, at least in part, to be responsible.(omitted)d)

  • PDF

인산화에 의한 사람심장 Voltage-gated $K^$통로 (hKv1.5) 활성 조절기전에 대한 전기생리학적 및 분자생물학적 접근

  • Kwak, Yong-Geun;Michael M. Tamkun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.22-23
    • /
    • 1999
  • Voltage-gated $K^{+}$ channels represent the most complex group of ion channel genes expressed in cardiovascular system. The human Kv1.5 channel (hKv1.5) represents the $I_{Kur}$ repolarizing current in atrial myocytes. The hKv1.5 channel is functionally modulated by the Kv$\beta$1.3 subunit, which converts it from a delayed rectifier to a channel with rapid inactivation and enhanced voltage sensitivity.(omitted)d)

  • PDF

Changes in Intracellular $Ca^{2+}$ Concentration Induced by L-Type $Ca^{2+}$ Channel Current in Guinea-Pig Gastric Myocytes

  • Kim, Ki-Whan
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.17-17
    • /
    • 1997
  • We investigated the relationship between the voltage-operated calcium channel current and the corresponding [Ca$^{2+}$]i change (Ca$^{2+}$-transient) in guinea-pig gastric myocyte. Fluorescence microspectroscopy was combined with conventional whole-cell patch clamp technique and fura-2 (80 $\mu$M) was added into the CsCl-rich pipette solution.(omitted)

  • PDF

Effect of Dopamine on the $Ca^{2+}\;-dependent\;K^+\;currents$ in Isolated Single Gastric Myocytes of the Guinea-pig

  • Rhee, Poong-Lyul;Lee, Sang-Jin;Kim, Sung-Joon;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.139-150
    • /
    • 1993
  • We have reported that dopamine potentiates spontaneous contractions dose-dependently in guinea-pig antral circular muscle strips (Hwang et al, 1991). To clarify the underlying excitatory mechanism of dopamine on the gastric smooth muscle, the effects of dopamine on voltage-dependent $Ca^{2+}\;currents\;and\;Ca^{2+}\;-dependent\;K^+\;currents$ were observed in enzymatically dispersed guinea-pig gastric myocytes using the whole-cell voltage-clamp technique. Experiments were also done using isometric tension recording and conventional intracellular microelectrode techniques. 1) The effect of dopamine on the spontaneous contraction of antral circular muscle strips of the guinea-pig was excitatory in a dose-dependent manner, and was blocked by phentolamine, an ${\alpha}-adrenoceptor$ blocker. 2) The slow waves were not changed by dopamine. 3) The voltage-operated inward $Ca^{2+}$ current was not influenced by dopamine. 4) The $Ca^{2+}\;-dependent\;K^+$ outward current, which might reflect the changes of intracellular calcium concentration, was enhanced by dopamine. This effect was abolished by phentolamine. 5) The enhancing effect of dopamine on the $Ca^{2+}\;-dependent\;K^+$ current disappeared with heparin which is known to block the action of $InsP_3$. From these results, it is suggested that dopamine acts via $InsP_3-mediated\;Ca^{2+}$ mobilization from intracellular stores and such action potentiates the spontaneous contraction of guinea-pig gastric smooth muscle.

  • PDF

Nitric Oxide-cGMP-Protein Kinase G Pathway Contributes to Cardioprotective Effects of ATP-Sensitive $K^+$ Channels in Rat Hearts

  • Cuong, Cang Van;Kim, Na-Ri;Cho, Hee-Cheol;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2004
  • Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium $(K_{ATP})$ channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that $K_{ATP}$ channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide $(100\;{\mu}M)$, SNAP $(300\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) $(100\;{\mu}M)$ followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide $(50\;{\mu}M)$, 5-hydroxydecanoate (5-HD) $(100\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) $(100\;{\mu}M)$. These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of $K_{ATP}$ channels in rat ventricular myocytes.

Effect of Metabolic Inhibition on Inward Rectifier K Current in Single Rabbit Ventricular Myocytes (토끼 단일 심근세포에서 대사억제시 Inward Rectifier$(I_{K1})$의 변화)

  • Chung, Yu-Jeong;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.741-748
    • /
    • 1997
  • In the present study, we have investigated the effect of metabolic inhibition on the inward rectifier K current ($I_{K1}$). Using whole cell patch clamp technique we applied voltage ramp from +80 mV to -140 mV at a holding potential of -30 mV and recorded the whole cell current in single ventricular myocytes isolated from the rabbit heart. The current-voltage relationship showed N-shape (a large inward current and little outward current with a negative slope) which is a characteristic of $I_{K1}$. Application of 0.2 mM dinitrophenol (DNP, an uncoupler of oxidative phosphorylation as a tool for chemical hypoxia) to the bathing solution with the pipette solution containing 5 mM ATP, produced a gradual increase of outward current followed by a gradual decrease of inward current with little change in the reversal potential (-80 mV). The increase of outward current was reversed by glibenclamide ($10\;{\mu}M$), suggesting that it is caused by the activation of $K_{ATP}$. When DNP and glibenclamide were applied at the same time or glibenclamide was pretreated, DNP produced same degree of reduction in the magnitude of the inward current. These results show that metabolic inhibition induces not only the increase of $K_{ATP}$ channel but also the decrease of $I_{K1}$. Perfusing the cell with ATP-free pipette solution induced the changes very similar to those observed using DNP. Long exposure of DNP (30 min) or ATP-free pipette solution produced a marked decrease of both inward and outward current with a significant change in the reversal potential. Above results suggest that the decrease of $I_{K1}$ may contribute to the depolarisation of membrane potential during metabolic inhibition.

  • PDF