Browse > Article
http://dx.doi.org/10.1007/s10059-009-0115-y

Modeling the Cardiac Na+/H+ Exchanger Based on Major Experimental Findings  

Cha, Chae Young (Biosimulation Project, Faculty of Bioinformatics, Ritsumeikan University)
Noma, Akinori (Biosimulation Project, Faculty of Bioinformatics, Ritsumeikan University)
Abstract
$Na^+-H^+$ exchanger (NHE) is the main acid extruder in cardiac myocytes. We review the experimental findings of ion-dependency of NHE activity, and the mathematical modeling developed so far. In spite of extensive investigation, many unsolved questions still remain. We consider that the precise description of NHE activity with mathematical models elucidates the roles of NHE in maintaining ionic homeostasis, especially under pathophysiological conditions.
Keywords
ion dependency; mathematical model; NHE;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bers, D.M., Barry, W.H., and Despa, S. (2003). Intracellular Na$^{+}$ regulation in cardiac myocytes. Cardiovasc. Res. 57, 897-912   DOI   ScienceOn
2 Ch'en, F.F., Vaughan-Jones, R.D., Clarke, K., and Noble, D. (1998). Modelling myocardial ischaemia and reperfusion. Prog. Biophys. Mol. Biol. 69, 515-538   DOI   ScienceOn
3 Harrison, S.M., Frampton, J.E., McCall, E., Boyett, M.R., and Orchard, C.H. (1992). Contraction and intracellular $Ca^2$, $Na^+$, and $H^+$ during acidosis in rat ventricular myocytes. Am. J. Physiol. 262, C348-357   DOI
4 Levine, S.A., Montrose, M.H., Tse, C.M., and Donowitz, M. (1993). Kinetics and regulation of three cloned mammalian $Na^+/H^+$ exchangers stably expressed in a fibroblast cell line. J. Biol. Chem.268, 25527-25535   PUBMED
5 Ng, L.L., Davies, J.E., Siczkowski, M., Sweeney, F.P., Quinn, P.A., Krolewski, B., and Krolewski, A.S. (1994). Abnormal $Na^+/H^+$ antiporter phenotype and turnover of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. J. Clin. Invest. 93,2750-2757   DOI   ScienceOn
6 Otsu, K., Kinsella, J.L., Heller, P., and Froehlich, J.P. (1993). Sodium dependence of the $Na^+/H^+$ exchanger in the pre-steady state. Implications for the exchange mechanism. J. Biol. Chem. 268, 3184-3193   PUBMED
7 Pandit, S.V., Clark, R.B., Giles, W.R., and Demir, S.S. (2001). A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029-3051   DOI   ScienceOn
8 Wakabayashi, S., Hisamitsu, T., Pang, T., and Shigekawa, M. (2003a). Kinetic dissection of two distinct proton binding sites in $Na^+/H^+$ exchangers by measurement of reverse mode reaction. J. Biol. Chem. 278, 43580-43585   DOI   ScienceOn
9 Wu, M.L., and Vaughan-Jones, R.D. (1997). Interaction between $Na^+$ and $H^+$ ions on Na-H exchange in sheep cardiac Purkinje fibers. J. Mol. Cell. Cardiol. 29, 1131-1140   DOI   ScienceOn
10 Yasutake, M., Haworth, R.S., King, A., and Avkiran, M. (1996). Thrombin activates the sarcolemmal $Na^+-H^+$ exchanger. Evidence for a receptor-mediated mechanism involving protein kinase C. Circ. Res. 79, 705-715   DOI   PUBMED   ScienceOn
11 Swietach, P., and Vaughan-Jones, R.D. (2005). Spatial regulation of intracellular pH in the ventricular myocyte. Ann. N Y Acad. Sci. 1047, 271-282   DOI   PUBMED   ScienceOn
12 Demaurex, N., Orlowski, J., Brisseau, G., Woodside, M., and Grinstein, S. (1995). The mammalian $Na^+/H^+$ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an $H^+$ conductance. J. Gen. Physiol. 106, 85-111   DOI   ScienceOn
13 Kuwahara, M., Sasaki, S., Uchida, S., Cragoe, E.J., Jr., and Marumo, F. (1994). Different development of apical and basolateral Na-H exchangers in LLC-PK1 renal epithelial cells: characterization by inhibitors and antisense oligonucleotide. Biochim. Biophys. Acta 1220, 132-138   DOI   PUBMED   ScienceOn
14 Weinstein, A.M. (1995). A kinetically defined $Na^+/H^+$ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105, 617-641   DOI   PUBMED   ScienceOn
15 Orchard, C.H., and Kentish, J.C. (1990). Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258, C967-981
16 Ch'en, F.F., Dilworth, E., Swietach, P., Goddard, R.S., and Vaughan-Jones, R.D. (2003). Temperature dependence of Na$^{+}$-H$^{+}$ exchange, Na$^{+}$-HCO$_{3}$ co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J. Physiol. 552, 715-726   DOI   ScienceOn
17 Hoque, A.N., Haist, J.V., and Karmazyn, M. (1997). $Na^+/H^+$ exchange inhibition protects against mechanical, ultrastructural, and biochemical impairment induced by low concentrations of lysophosphatidylcholine in isolated rat hearts. Circ. Res. 80, 95-102   DOI   PUBMED   ScienceOn
18 Bountra, C., and Vaughan-Jones, R.D. (1989). Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J. Physiol. 418, 163-187   DOI   PUBMED
19 Niederer, S.A., and Smith, N.P. (2007). A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys. J. 92, 4030-4044   DOI   ScienceOn
20 Lacroix, J., Poet, M., Maehrel, C., and Counillon, L. (2004). A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep. 5, 91-96   DOI   ScienceOn
21 van Borren, M.M., Baartscheer, A., Wilders, R., and Ravesloot, J.H. (2004). NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes. J. Mol. Cell. Cardiol. 37, 567-577   DOI   ScienceOn
22 Alexander, R.T., Malevanets, A., Durkan, A.M., Kocinsky, H.S., Aronson, P.S., Orlowski, J., and Grinstein, S. (2007). Membrane curvature alters the activation kinetics of the epithelial $Na^+/H^+$ exchanger, NHE3. J. Biol. Chem. 282, 7376-7384   DOI   ScienceOn
23 Otsu, K., Kinsella, J., Sacktor, B., and Froehlich, J.P. (1989). Transient state kinetic evidence for an oligomer in the mechanism of $Na^+/H^+$ exchange. Proc. Natl. Acad. Sci. USA 86, 4818-4822   DOI   ScienceOn
24 Choi, H.S., Trafford, A.W., Orchard, C.H., and Eisner, D.A. (2000). The effect of acidosis on systolic $ Ca^2^+$ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J. Physiol. 529, 661-668   DOI   ScienceOn
25 Moncoq, K., Kemp, G., Li, X., Fliegel, L., and Young, H.S. (2008). Dimeric structure of human $Na^+/H^+$ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J. Biol. Chem. 283, 4145-4154   DOI   ScienceOn
26 Vaughan-Jones, R.D., and Wu, M.L. (1990). Extracellular $H^+$ inactivation of $Na^+-H^+$ exchange in the sheep cardiac Purkinje fibre. J. Physiol. 428, 441-466   DOI   PUBMED
27 Leem, C.H., Lagadic-Gossmann, D., and Vaughan-Jones, R.D. (1999). Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J. Physiol.517(Pt1), 159-180   DOI   ScienceOn
28 Yamamoto, T., Swietach, P., Rossini, A., Loh, S.H., Vaughan-Jones, R.D., and Spitzer, K.W. (2005). Functional diversity of electrogenic $Na^+-HCO_3^-$ cotransport in ventricular myocytes from rat, rabbit and guinea pig. J. Physiol. 562, 455-475   DOI   ScienceOn
29 Crampin, E.J., and Smith, N.P. (2006). A dynamic model of excitation- ontraction coupling during acidosis in cardiac ventricular myocytes. Biophys. J. 90, 3074-3090   DOI   ScienceOn
30 Slepkov, E.R., Rainey, J.K., Sykes, B.D., and Fliegel, L. (2007). Structural and functional analysis of the $Na^+/H^+$ exchanger. Biochem. J. 401, 623-633   DOI   ScienceOn
31 Goodrich, A.L., and Suchy, F.J. (1990). $Na^+-H^+$ exchange in basolateral plasma membrane vesicles from neonatal rat liver. Am. J. Physiol. 259, G334-339
32 Jean, T., Frelin, C., Vigne, P., Barbry, P., and Lazdunski, M. (1985). Biochemical properties of the $Na^+/H^+$ exchange system in rat brain synaptosomes. Interdependence of internal and external pH control of the exchange activity. J. Biol. Chem. 260, 9678-9684   PUBMED
33 Pedersen, S.F., O'Donnell, M.E., Anderson, S.E., and Cala, P.M. (2006). Physiology and pathophysiology of $Na^+/H^+$ exchange and $Na^+ -K^+ -2Cl^-$ cotransport in the heart, brain, and blood. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1-25   DOI   PUBMED   ScienceOn
34 Aronson, P.S., Nee, J., and Suhm, M.A. (1982). Modifier role of internal H$^{+}$ in activating the Na$^{+}$-H$^{+}$ exchanger in renal microvillus membrane vesicles. Nature 299, 161-163   DOI   ScienceOn
35 Fuster, D., Moe, O.W., and Hilgemann, D.W. (2008). Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J. Gen. Physiol. 132, 465-480   DOI   ScienceOn
36 Miyata, Y., Muto, S., and Kusano, E. (2005). Mechanisms for nongenomic and genomic effects of aldosterone on $Na^+/H^+$ exchange in vascular smooth muscle cells. J. Hypertens. 23, 2237-2250   DOI   ScienceOn
37 Crampin, E.J., Smith, N.P., Langham, A.E., Clayton, R.H., and Orchard, C.H. (2006). Acidosis in models of cardiac ventricular myocytes. Philos. Transact. A. Math. Phys. Eng. Sci. 364, 1171-1186   DOI   ScienceOn
38 Hoffmann, G., Ko, Y., Sachinidis, A., Gobel, B.O., Vetter, H., Rosskopf, D., Siffert, W., and Dusing, R. (1995). Kinetics of $Na^+/H^+$ exchange in vascular smooth muscle cells from WKY and SHR: effects of phorbol ester. Am. J. Physiol. 268, C14-20   DOI
39 Le Prigent, K., Lagadic-Gossmann, D., and Feuvray, D. (1997). Modulation by pH0 and intracellular $Ca^2^+$ of $Na^+/H^+$ exchange in diabetic rat isolated ventricular myocytes. Circ. Res.80, 253-260   DOI   PUBMED   ScienceOn
40 Wallert, M.A., and Frohlich, O. (1989). $Na^+-H^+$ exchange in isolated myocytes from adult rat heart. Am. J. Physiol. 257, C207-213   DOI
41 Gore, J., Besson, P., Hoinard, C., and Bougnoux, P. (1994). $Na^+-H^+$ antiporter activity in relation to membrane fatty acid composition and cell proliferation. Am. J. Physiol.266, C110-120   DOI
42 Hisamitsu, T., Ben Ammar, Y., Nakamura, T.Y., and Wakabayashi, S. (2006). Dimerization is crucial for the function of the $Na^+/H^+$ exchanger NHE1. Biochemistry 45, 13346-13355   DOI   ScienceOn
43 Green, J., Yamaguchi, D.T., Kleeman, C.R., and Muallem, S. (1988). Cytosolic pH regulation in osteoblasts. Interaction of $Na^+$ and $H^+$ with the extracellular and intracellular faces of the $Na^+-H^+$ exchanger. J. Gen. Physiol. 92, 239-261   DOI   ScienceOn
44 Wakabayashi, S., Hisamitsu, T., Pang, T., and Shigekawa, M. (2003b). Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of $Na^+/H^+$ exchanger 1. J. Biol. Chem. 278, 11828-11835   DOI   ScienceOn