C - 15

The Role of PLC β 1 in Desensitization of Acetycholine Activated K⁺ Currents in Mouse Atrial Myocytes

Hana Cho*, Won-Kyung Ho, and Yung E Earm Department of Physiology, Seoul National University College of Medicine. Seoul 110-799. Korea

The negative chronotropic effect of ACh on heart fades in the continuous presence of ACh, which is known as a phenomenon called "vagal escape". The underlying mechanism of vagal escape is not entirely clear, but desensitization of acetylcholine-activated K currents (K_{ACh}) was suggested, at least in part, to be responsible. It was recently shown that in PLC β 1 mutant mice, carbachol (CCh) induced a sustained membrane hyperpolarization, resulting in a complete cessation of spontaneous rhythm. From this result, it could be hypothesized that signal transduction pathways involving PLC β 1, such as PKC and PIP2, may contribute to desensitization of K_{ACh} . In the present study, we have tested this hypothesis using isolated atrial myocytes of PLC β 1 mutant mice. Uisng nystatin perforated whole cell clamp technique, voltage ramps between -120 and +60 mV were applied, and K_{Ach} was obtained from the increase of currents induced by 10 μ M CCh. The results are as follows:

- 1. Activation of K_{ACh} induced by CCh showed no difference between wild type and mutant mice. The extent of desensitization was significantly smaller in PLC β 1 mutant mice. The decrease of current measured at -120 mV after 4 min of CCh application was 20.5 \pm 10.6 % (n=8) in wild type, and 8.3 \pm 9.8 % (n=6) in mutant mice.
- 2. PKC specific activator, PDBU (100 nM) and TPA (1 μ M), have no effect on K_{ACh} desensitization in wild mice, whereas they facilitated desensitization in mutant mice, resulting in further reduction by 22.7 \pm 9.4 % (n=3). But PKC specific inhibitor, staurosporine(10 nM) have no effect on K_{ACh} desensitization both in wild mice and mutant mice.
- 3. K_{ACh} desensitization was accelerated by 100 μ M phenylephrine which is known to hydrolyze PIP₂ via different PLC.

These results support the hypothesis that signal transduction pathways involving PLC β 1, such as PKC and PIP₂, contribute to desensitization of K_{ACh}, and thus modulate chronotropic response to CCh.