• Title/Summary/Keyword: Myeloperoxidase

Search Result 231, Processing Time 0.028 seconds

Protective Effect of Defibrotide on Splanchnic Injury following Ischemia and Reperfusion in Rats

  • Choi, Soo-Ran;Jeong, Ji-Hoon;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock, characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of defibrotide, a complex of single-stranded polydeoxyribonucleotides having antithrombotic effect, was investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state, resulting in a fatal outcome within 120 min of reperfusion in many rats. Defibrotide (10 mg/kg body weight) 10 min prior to reperfusion significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Defibrotide treatment also significantly attenuated in the increase of plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged hydrogen peroxide, but not hydroxyl radical. Treatment of SAO rats with defibrotide inhibited tumor necrosis factor-${\alpha}$, and interleukin-1${\beta}$ productions in blood in comparison with untreated rats. These results suggest that defibrotide partly provides beneficial effects by preserving endothelial function, attenuating neutrophil accumulation, and antioxidant in the ischemic reperfused splanchnic circulation

Effect of Amrinone, a Selective Inhibitor of Phosphodiesterase III, on PMNs-induced Cardiac Dysfunction in Ischemia/reperfusion

  • Oh, Byung-Kwon;Kim, Hyoung-Ki;Choi, Soo-Ran;Song, Jin-Ho;Park, Eon-Sub;Choi, Byung-Sun;Park, Jung-Duck;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2004
  • Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. Amrinone, a specific inhibitor of phosphodiesterase 3, has an antioxidant activity against PMNs. Therefore, we hypothesized that amrinone could attenuate PMNs-Induced cardiac dysfunction by suppression of reactive oxygen species (ROS) produced fby PMNs. In the present study, we examined the effects of amrinone on isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. Amrinone at $25\;{\mu}M$, given to hearts during the first 5 min of reperfusion, significantly improved coronary flow, left ventricular developed pressure (P<0.001), and the maximal rate of development of left ventricular developed pressure (P<0.001), compared with ischemic/reperfused hearts perfused with PMNs in the absence of amrinone. In addition, amrinone significantly reduced myeloperoxidase activity by 50.8%, indicating decreased PMNs infiltration (p< 0.001). Superoxide radical and hydrogen peroxide production were also significantly reduced in fMLP- and PMA-stimulated PMNs pretreated with amrinone. Hydroxyl radical was scavenged by amrinone. fMLP-induced elevation of $[Ca^{2+}]_i$ was also inhibited by amrinone. These results provide evidence that amrinone can significantly attenuate PMN-induced cardiac contractile dysfunction in the ischemic/reperfused rat heart via attenuation of PMNs infiltration into the myocardium and suppression of ROS release by PMNs.

Effects of Local Pancreatic Renin-Angiotensin System on the Microcirculation of Rat with Severe Acute Pancreatitis

  • Pan, Zhijian;Feng, Ling;Long, Haocheng;Wang, Hui;Feng, Jiarui;Chen, Feixiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.299-307
    • /
    • 2015
  • Severe acute pancreatitis (SAP) is normally related to multiorgan dysfunction and local complications. Studies have found that local pancreatic renin-angiotensin system (RAS) was significantly upregulated in drug-induced SAP. The present study aimed to investigate the effects of angiotensin II receptors inhibitor valsartan on dual role of RAS in SAP in a rat model and to elucidate the underlying mechanisms. 3.8% sodium taurocholate (1 ml/kg) was injected to the pancreatic capsule in order for pancreatitis induction. Rats in the sham group were injected with normal saline in identical locations. We also investigated the regulation of experimentally induced SAP on local RAS expression in the pancreas through determination of the activities of serum amylase, lipase and myeloperoxidase, histological and biochemical analysis, radioimmunoassay, fluorescence quantitative PCR and Western blot analysis. The results indicated that valsartan could effectively suppress the local RAS to protect against experimental acute pancreatitis through inhibition of microcirculation disturbances and inflammation. The results suggest that pancreatic RAS plays a critical role in the regulation of pancreatic functions and demonstrates application potential as AT1 receptor antagonists. Moreover, other RAS inhibitors could be a new therapeutic target in acute pancreatitis.

Suppression of Transglutaminase-2 is Involved in Anti-Inflammatory Actions of Glucosamine in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation

  • Park, Mi-Kyung;Cho, Sun-A;Lee, Hye-Ja;Lee, Eun-Ji;Kang, June-Hee;Kim, You-Lee;Kim, Hyun-Ji;Oh, Seung-Hyun;Choi, Chang-Sun;Lee, Ho;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.380-385
    • /
    • 2012
  • Glucosamine (GS) is well known for the treatment of inflammation. However, the mechanism and efficacy of GS for skin inflammation are unclear. The aim of this study was to evaluate the effects and mechanism of GS in the mouse 12-O-tetradecanoyl 13-acetate (TPA)-induced ear edema model. TPA-induced ear edema was evoked in ICR or transglutaminase 2 (Tgase-2) (-/-) mice. GS was administered orally (10-100 mg/kg) or topically (0.5-2.0 w/v %) prior to TPA treatment. Orally administered GS at 10 mg/kg showed a 76 or 57% reduction in ear weight or myeloperoxidase, respectively, and a decreased expression of cyclooxygenase-2 (COX-2), NF-${\kappa}B$ and Tgase-2 in TPA-induced ear edema by western blot and immunohistochemistry. Role of Tgase-2 in TPA ear edema is examined using Tgase-2 (-/-) mice and TPA did not induce COX-2 expression in ear of Tgase-2 (-/-) mice. These observations suggested that Tgase-2 is involved in TPA-induced COX-2 expression in the inflamed ear of mice and antiinflammatory effects of glucosamine is mediated through suppression of Tgase-2 in TPA ear edema.

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

  • Park, Mi-Young;Kim, Min Young;Seo, Young Rok;Kim, Jong-Sang;Sung, Mi-Kyung
    • Journal of Cancer Prevention
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in $Apc^{Min/+}$ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2'-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis.

The Effects of Gyejijakyakjimo-Tang on the Allergic Contact Dermatitis induced by DNCB (계지작약지모탕(桂枝芍藥知母湯)이 DNCB로 유발된 알레르기성 접촉피부염에 미치는 영향)

  • Kim, Sung-Ho;Kim, Hee-Taek
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.1
    • /
    • pp.8-22
    • /
    • 2010
  • Objectives : The purpose of this study is to investigate the effects of Gyejijakyakjimo-Tang on the Allergic Contact Dermatitis caused by 2,4-dinitro-chlorobezene(DNCB). Methods : Twenty eight mice were divided into four groups ; normal, control, experimental group A and B. Control and experimental groups were induced allergic contact dermatitis by DNCB. Experimental group A was orally administered the Gyejijakyakjimo-Tang and experimental group B was orally administered the prednisolone. In this study, ear thickness measurement, auricle microphotograph observation, MPO(Myeloperoxidase) activity measurement, Reverse transcription-polymerase chain reaction(RT-PCR) analysis of the mRNA level of TNF-$\alpha$, IL-$1{\beta}$ were performed on these four groups. In addition, the effect of Gyejijakyakjimo-Tang on cell viability and the effect of Gyejijakyakjimo-Tang on the compound 48/80-induced histamine release from HMC and RPMC were measured. Results: 1. Both experimental group A and B had decreased ear thickness compared with control group In contact hypersensitivity assay. 2. In experimental group A, inflammatory edema was similarly observed comparing to control group. Nevertheless, inflammatory edema was obviously reduced in experimental group B. In both experimental group A and B, pathological lesion of dermatitis were alleviated. In addition, the numbers of infiltrated inflammatory cells were decreased compared with control group. 3. Compared to the normal group, there was a noticeable increase in MPO activity in control group. However, in experimental group A and B, it showed remarkable inhibition of the increase in MPO activity comparing with control group. 4. The level of expression of TNF-$\alpha$, IL-$1{\beta}$ in experimental group A and B were meaningfully lower than those in control group. 5. In MTT assay, the concentrations of Gyejijakyakjimo-Tang that were used on the test had no cytotoxicity. 6. Gyejijakyakjimo-Tang dose-dependently inhibited the compound 48/80-induced histamine release from both HMC and RPMC. Conclusions : According to above experiments, Gyejijakyakjimo-Tang was effective on allergic contact dermatitis.

Protective Effects of Ethanol Extract from Aster Yomena on Acute Pancreatitis (쑥부쟁이 에탄올 추출물의 급성췌장염 보호 효과)

  • Seo, Sang Wan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • Aster Yomena (AY) has been used in traditional medicine to treat diseases such as obesity, hyperlipidemia, atherosclerosis, diabetes and osteoarthritis. However, protective effect of AY on acute pancreatitis (AP) has not been reported. The present study examined the anti-inflammatory effects of an ethanol extract of AY on cerulein-induced AP. AP was induced in mice by intraperitoneally injecting cerulein ($50{\mu}g/kg$) hourly for 6 times. 70% ethanol extract of AY (0.1, 0.2, and 0.5 g/kg) was orally administered for 1 week before acute pancreatitis induction. The mouse was killed at 6 hours after the final cerulein injection. The pancreas and lung were rapidly removed for histological examination and myeloperoxidase (MPO) assay. Blood samples were taken to determine serum amylase and lipase activity. In addition real-time reverse transcription-polymerase chain reaction (RT-PCR) was also performed to investigate mRNA expression of proinflammatory cytokines such as $TNF-{\alpha}$. $IL-1{\beta}$, and IL-6. Administration of AY significantly ameliorated pancreatic weight to body weight ratio, histological damages and MPO activity during AP. In addition, AY inhibited the serum amylase and lipase activity during AP. Also, mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 were inhibited by AY against AP. Our results revealed that pre-treatment of AY reduces the severity of cerulein-induced AP. Therefore, AY may have a protective effect drug against AP.

Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice

  • Yoon, Ji-Woo;Ahn, Sung-Il;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.162-176
    • /
    • 2019
  • This study was performed to evaluate the antioxidant activity of yogurt fermented at low temperature and the anti-inflammatory effect it has on induced colitis with 2.5% dextran sodium sulfate (DSS) in Balb/c mice. Yogurt premix were fermented with a commercial starter culture containing Lactobacillus acidophilus, Bifidobacterium lactis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus at different temperatures: $22^{\circ}C$ (low fermentation temperature) for 27 h and $37^{\circ}C$ (general fermentation temperature) for 12 h. To measure antioxidant activity of yogurt samples, DPPH, $ABTS^+$ and ferric reducing antioxidant potential (FRAP) assays were conducted. For animal experiments, inflammation was induced with 2.5% DSS in Balb/c mice. Yogurt fermented at low temperature showed higher antioxidant activity than that of the yogurt fermented at general temperature. In the inflammatory study, IL-6 (interleukin 6) was decreased and IL-4 and IL-10 increased significantly in DSS group with yogurt fermented at general temperature (DYG) and that with yogurt fermented at low temperature (DYL) compared to that in DSS-induced colitic mice (DC), especially DYL had higher concentration of cytokines IL-4, and IL-10 than DYG. MPO (myeloperoxidase) tended to decrease more in treatments with yogurt than DC. Additionally, yogurt fermented at low temperature had anti-inflammatory activity, although there was no significant difference with general temperature-fermented yogurt (p>0.05).

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.