• Title/Summary/Keyword: Mycobacterium tuberculosis (MTB)

Search Result 78, Processing Time 0.019 seconds

Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis

  • Abu Saim Mohammad, Saikat
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.25.1-25.12
    • /
    • 2023
  • Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.

Mycobacterium tuberculosis Derived Epitope Peptide Specific CD8+T Cell Responses in Tuberculous Pleurisy

  • Cho, Jang-Eun;Kim, Young-Sam;Park, Moo-Suk;Lee, Kyung-Wha;Lee, Eun-Hee;Cho, Sang-Nae;Cho, Sung-Ae
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.325-332
    • /
    • 2007
  • Cell-mediated immune response (CMI) is a major immune protective mechanism against tuberculosis (TB) infection. Among several components involved in CMI, recent studies suggest that CD8+ T cells are important in controlling TB infection. In our previous report, we defined four Mycobacterium tuberculosis (MTB) derived epiotpe peptides specific for HLA-A*0201-restricted CD8+ T cells. These four peptides are $PstAl_{75-83}$, $ThyA_{30-38}$, $RpoB_{127-135}$ and $85B_{15-23}$. In this study, these epitope peptides specific CD8+ T cell responses in tuberculous pleurisy were investigated using ex vivo $IFN-\gamma$ elispot assay and intracellular $IFN-\gamma$ staining method. As a result, we observed these epitope peptide specific CD8+ T cell responses are induced in all three patients with tuberculous pleurisy suggesting that CD8+ T cells are involved in protective immune mechanism against MTB infection in tuberculous pleurisy. However, the CMI to mitogens and MTB antigens from pleural fluids of patients with tuberculous pleurisy does not seem to correlate with that from peripheral blood, although the sample size is too small to make any conclusion. In sum, the MHC I restricted CD8+ T cell responses seem to be induced efficiently in the pleural fluids, at the site of TB infection, in which the CMI is actively induced. In addition, these experiments suggest that MHC I restricted CD8+ T cell mediated immune responses are also involved in protective mechanism against MTB infection in extra-pulmonary TB.

  • PDF

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun;Park, Sang-Jung;Cho, Sang-Nae;Lee, Hye-Young;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.583-588
    • /
    • 2012
  • Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin;Qu, Yuliang;Yang, Shaoqi;Zhao, Ya'e;Xu, Guangxian
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.989-998
    • /
    • 2019
  • Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

Inhibition of the DevSR Two-Component System by Overexpression of Mycobacterium tuberculosis PknB in Mycobacterium smegmatis

  • Bae, Hyun-Jung;Lee, Ha-Na;Baek, Mi-Na;Park, Eun-Jin;Eom, Chi-Yong;Ko, In-Jeong;Kang, Ho-Young;Oh, Jeong-Il
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.632-642
    • /
    • 2017
  • The DevSR (DosSR) two-component system, which is a major regulatory system involved in oxygen sensing in mycobacteria, plays an important role in hypoxic induction of many genes in mycobacteria. We demonstrated that overexpression of the kinase domain of Mycobacterium tuberculosis (Mtb) PknB inhibited transcriptional activity of the DevR response regulator in Mycobacterium smegmatis and that this inhibitory effect was exerted through phosphorylation of DevR on Thr180 within its DNA-binding domain. Moreover, the purified kinase domain of Mtb PknB significantly phosphorylated RegX3, NarL, KdpE, TrcR, DosR, and MtrA response regulators of Mtb that contain the Thr residues corresponding to Thr180 of DevR in their DNA-binding domains, implying that transcriptional activities of these response regulators might also be inhibited when the kinase domain of PknB is overexpressed.

Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection

  • Jin Kyung Kim;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.37.1-37.15
    • /
    • 2020
  • Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.

Evaluation of Peptide Nucleic Acid Probe-Based Fluorescence In Situ Hybridization for the Detection of Mycobacterium tuberculosis Complex and Nontuberculous Mycobacteria in Clinical Respiratory Specimens (임상 객담검체에서 Peptide Nucleic Acid Probe를 이용한 결핵과 비결핵 항산균의 구분)

  • Lee, Seung Hee;Kim, Shine Young;Kim, Hyung Hoi;Lee, Eun Yup;Chang, Chulhun L.
    • Annals of Clinical Microbiology
    • /
    • v.18 no.2
    • /
    • pp.37-43
    • /
    • 2015
  • Background: Tuberculosis is globally the most important cause of death from single pathogen. Rapid and accurate identification of mycobacteria is essential for the control of tuberculosis. We evaluated a fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes for the differentiation of Mycobacterium tuberculosis complex (MTB) and nontuberculous mycobacteria (NTM) in direct smears of sputum specimens. Methods: The cross-reactivity of MTB- and NTM-specific PNA probes was examined with reference strains of M. tuberculosis ATCC 13950, Mycobacterium kansasii ATCC 12479, Mycobacterium fortuitum ATCC 6841, several clinical isolates of mycobacteria (Mycobacterium abscessus, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium gordonae and Mycobacterium chelonae), and 11 frequently isolated respiratory bacterial species other than mycobacteria. A series of 128 sputa (89 MTB culture positive, 29 NTM culture positive, and 10 under treatment culture negative) with grades of trace to 4+ were used to evaluate the performance of the method. Results: The MTB- and NTM-specific PNA probes showed specific reactions with the reference strains of MTB and M. kansasii and clinical isolates of mycobacteria except M. fortuitum ATCC 6841, and no cross-reactivity with other tested bacteria. The PNA probe-based FISH assay for detection of MTB had a sensitivity and specificity of 100%, respectively. The sensitivity and specificity of the NTM-specific PNA probe was 100%. The smear grades of the PNA FISH test were same as with those of the fluorescence AFB stain in 2+ or higher grade. Conclusion: Detection and differentiation based on PNA FISH is sensitive and accurate for detecting mycobacteria and for differentiating MTB from NTM in clinical sputum smears.

Multicenter Evaluation of Seegene Anyplex TB PCR for the Detection of Mycobacterium tuberculosis in Respiratory Specimens

  • Lim, Jinsook;Kim, Jimyung;Kim, Jong Wan;Ihm, Chunhwa;Sohn, Yong-Hak;Cho, Hyun-Jung;Kim, Jayoung;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.1004-1007
    • /
    • 2014
  • Culture is the gold standard for diagnosis of tuberculosis, but it takes 6 to 8 weeks to confirm the result. This issue is complemented by the detection method using polymerase chain reaction, which is now widely used in a routine microbiology laboratory. In this study, we evaluated the performance of the Seegene Anyplex TB PCR to assess its diagnostic sensitivity and specificity, and compared its results with the Roche Cobas TaqMan MTB PCR, one of the most widely used assays in the world. Five university hospitals located in the Chungcheong area in South Korea participated in the study. A total of 1,167 respiratory specimens ordered for acid-fast bacilli staining and culture were collected for four months, analyzed via the Seegene Anyplex TB PCR, and its results were compared with the Roche Cobas TaqMan MTB PCR. For detection of Mycobacterium tuberculosis, the diagnostic sensitivity and specificity of the Anyplex TB PCR were 87.5% and 98.2% respectively, whereas those of the Cobas TaqMan were 92.0% and 98.0% respectively (p value > 0.05). For smear-positive specimens, the sensitivity of the Anyplex TB PCR was 95.2%, which was exactly the same as that of the Cobas TaqMan. For smear-negative specimens, the sensitivity of the Anyplex TB PCR was 69.2%, whereas that of the Cobas TaqMan TB PCR was 84.6%. For detection of MTB, the Seegene Anyplex TB PCR showed excellent diagnostic performance, and high sensitivity and specificity, which were comparable to the Roche Cobas TaqMan MTB PCR. In conclusion, the Anyplex TB PCR can be a useful diagnostic tool for the early detection of tuberculosis in clinical laboratories.

Diagnosis of Mycobacterium tuberculosis Infection using Ex-vivo interferon-gamma Assay (체외 Interferon-gamma 검사를 이용한 결핵감염의 진단)

  • Lee, Jung Yeon;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.5
    • /
    • pp.497-509
    • /
    • 2006
  • Until recently, the tuberculin skin test (TST) has been the only tool available for diagnosing a latent TB infection. However, the development of new diagnostic tools, using the Mycobacterium tuberculosis (MTB)-specific early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) antigens, should improve the control of tuberculosis (TB) by allowing a more accurate identification of a latent TB infection (LTBI). Antigen-specific interferon-gamma ($IFN-{\gamma}$) assays have greater specificity in BCG-vaccinated individuals, and as less biased by nontuberculous mycobacterial infections. Many comparative studies have suggested that those assays have a higher specificity than the TST, and the sensitivity of these assays are expected to remarkably improved if more MTB-specific antigens can become available. Nevertheless, the major obstacle to the widespread use of these tests is the limited financial resources. Similar to other diagnostic tests, the predictive value of $IFN-{\gamma}$ assays depends on the prevalence of a MTB infection in the population being tested. Therefore, prospective studies will be meeded to establish the applicability of these new assays at multiple geographic locations among patients of different ethnicities, and to determine if the $IFN-{\gamma}$ responses can indicate those with a high risk of progressing to active TB.

Mycobacterium tuberculosis DNA Detection and Molecular Drug Susceptibility Test in AFB-stained Sputum Slides

  • Jung, Dongju;Lee, Hyeyoung;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2016
  • Tuberculosis (TB) remains an unsolved community health problem since identification of its causing microorganism called Mycobacterium tuberculosis (MTB) by Robert Koch in 1882. Annually, eight million TB cases are newly reported and 2~3 million patients die from TB. Pulmonary TB is highly infectious and untreated pulmonary TB patients are believed to infect >10 people in a year. The conventional methods for diagnosis of TB are chest X-ray and isolation of the causing microorganisms from patient specimens. Screening of TB is conducted with smeared sputum in slides, and TB is confirmed by identification of MTB in cultured specimens. One of the fatal pitfalls of screening detection for smeared sputum is that it is impossible to distinguish MTB and other acid-fast bacilli (AFB) because they are stained equally with Ziehl-Neelsen (ZN) stain. Culture of MTB is the most reliable method for diagnosis of TB but it takes 4~8 weeks. In this report, we suggest a fast and highly-reliable MTB detection method that distinguishes AFB in sputum samples. Purified DNA from the AFB stained slide samples offered by The Korean Institute of Tuberculosis were used to detect infected MTB in patients. PCR, real-time PCR and reverse blot hybridization assay (REBA) methods were applied to purified DNA. Conclusively, the real-time PCR method was confirmed to produce high sensitivity and we were able to further detect drug-resistant MTB with REBA.