Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0076

Inhibition of the DevSR Two-Component System by Overexpression of Mycobacterium tuberculosis PknB in Mycobacterium smegmatis  

Bae, Hyun-Jung (Department of Microbiology, Pusan National University)
Lee, Ha-Na (Department of Microbiology, Pusan National University)
Baek, Mi-Na (Department of Microbiology, Pusan National University)
Park, Eun-Jin (Department of Microbiology, Pusan National University)
Eom, Chi-Yong (Korea Basic Science Institute)
Ko, In-Jeong (Korea Science Academy of KAIST)
Kang, Ho-Young (Department of Microbiology, Pusan National University)
Oh, Jeong-Il (Department of Microbiology, Pusan National University)
Abstract
The DevSR (DosSR) two-component system, which is a major regulatory system involved in oxygen sensing in mycobacteria, plays an important role in hypoxic induction of many genes in mycobacteria. We demonstrated that overexpression of the kinase domain of Mycobacterium tuberculosis (Mtb) PknB inhibited transcriptional activity of the DevR response regulator in Mycobacterium smegmatis and that this inhibitory effect was exerted through phosphorylation of DevR on Thr180 within its DNA-binding domain. Moreover, the purified kinase domain of Mtb PknB significantly phosphorylated RegX3, NarL, KdpE, TrcR, DosR, and MtrA response regulators of Mtb that contain the Thr residues corresponding to Thr180 of DevR in their DNA-binding domains, implying that transcriptional activities of these response regulators might also be inhibited when the kinase domain of PknB is overexpressed.
Keywords
DevSR; mycobacterium; Ser/Thr protein kinase; two-component system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baer, C.E., Iavarone, A.T., Alber, T., and Sassetti, C.M. (2014). Biochemical and spatial coincidence in the provisional Ser/Thr protein kinase interaction network of Mycobacterium tuberculosis. J. Biol. Chem. 289, 20422-20433.   DOI
2 Pereira, S.F., Goss, L., and Dworkin, J. (2011). Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev. 75, 192-212.   DOI
3 Plocinska, R., Purushotham, G., Sarva, K., Vadrevu, I.S., Pandeeti, E.V., Arora, N., Plocinski, P., Madiraju, M.V., and Rajagopalan, M. (2012). Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J. Biol. Chem. 287, 23887-23899.   DOI
4 Podust, L.M., Ioanoviciu, A., and Ortiz de Montellano, P.R. (2008). 2.3 ${\AA}$ X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry 47, 12523-12531.   DOI
5 Prisic, S., Dankwa, S., Schwartz, D., Chou, M.F., Locasale, J.W., Kang, C.M., Bemis, G., Church, G.M., Steen, H., and Husson, R.N. (2010). Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA 107, 7521-7526.   DOI
6 Roberts, D.M., Liao, R.P., Wisedchaisri, G., Hol, W.G., and Sherman, D.R. (2004). Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem. 279, 23082-23087.   DOI
7 Russell, D.G. (2007). Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5, 39-47.   DOI
8 Rustad, T.R., Sherrid, A.M., Minch, K.J. and Sherman, D.R. (2009). Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol. 11, 1151-1159.   DOI
9 Saini, D.K., Malhotra, V., and Tyagi, J.S. (2004). Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett. 565, 75-80.   DOI
10 Sambrook J, G.M. (2012). Molecular cloning: a laboratory manual, 4th ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
11 Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544.   DOI
12 Chao, J.D., Papavinasasundaram, K.G., Zheng, X., Chavez-Steenbock, A., Wang, X., Lee, G.Q., and Av-Gay, Y. (2010). Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem. 285, 29239-29246.   DOI
13 Chawla, Y., Upadhyay, S., Khan, S., Nagarajan, S.N., Forti, F., and Nandicoori, V.K. (2014). Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem. 289, 13858-13875.   DOI
14 Cho, H.Y., Cho, H.J., Kim, Y.M., Oh, J.I., and Kang, B.S. (2009). Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem. 284, 13057-13067.   DOI
15 Fernandez, P., Saint-Joanis, B., Barilone, N., Jackson, M., Gicquel, B., Cole, S.T., and Alzari, P.M. (2006). The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol. 188, 7778-7784.   DOI
16 Fol, M., Chauhan, A., Nair, N.K., Maloney, E., Moomey, M., Jagannath, C., Madiraju, M.V., and Rajagopalan, M. (2006). Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol. Microbiol. 60, 643-657.   DOI
17 Fontan, P., Walters, S., and Smith, I. (2004). Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis: stress control and virulence. Curr. Sci. 86, 122-134.
18 Sherman, D.R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M.I., and Schoolnik, G.K. (2001). Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding ${\alpha}$-crystallin. Proc. Natl. Acad. Sci. U S A 98, 7534-7539.   DOI
19 Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Dolganov, G., Efron, B., Butcher, P.D., Nathan, C., et al. (2003). Transcriptional adaptation of Mycobacterium tuberculosis within Mmrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693-704.   DOI
20 Shah, I.M., Laaberki, M.H., Popham, D.L., and Dworkin, J. (2008). A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486-496.   DOI
21 Shi, L., Potts, M., and Kennelly, P.J. (1998). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229-253.   DOI
22 Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R., Jr. (1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911-1919.   DOI
23 Sousa, E.H., Tuckerman, J.R., Gonzalez, G., and Gilles-Gonzalez, M.A. (2007). DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci. 16, 1708-1719.   DOI
24 Wisedchaisri, G., Wu, M., Sherman, D.R., and Hol, W.G. (2008). Crystal structures of the response regulator DosR from Mycobacterium tuberculosis suggest a helix rearrangement mechanism for phosphorylation activation. J. Mol. Biol. 378, 227-242.   DOI
25 Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000). Twocomponent signal transduction. Annu. Rev. Biochem. 69, 183-215.   DOI
26 Voskuil, M.I., Schnappinger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M., Sherman, D.R., and Schoolnik, G.K. (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705-713.   DOI
27 Wayne, L.G. and Sohaskey, C.D. (2001). Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139-163.   DOI
28 Wehenkel, A., Bellinzoni, M., Grana, M., Duran, R., Villarino, A., Fernandez, P., Andre-Leroux, G., England, P., Takiff, H., Cervenansky, C., et al. (2008). Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta. 1784, 193-202.   DOI
29 West, A.H. and Stock, A.M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369-376.   DOI
30 Yeats, C., Finn, R.D., and Bateman, A. (2002). The PASTA domain: $a{\beta}$-lactam-binding domain. Trends Biochem. Sci. 27, 438.   DOI
31 Young, T.A., Delagoutte, B., Endrizzi, J.A., Falick, A.M., and Alber, T. (2003). Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10, 168-174.   DOI
32 James, J.N., Hasan, Z.U., Ioerger, T.R., Brown, A.C., Personne, Y., Carroll, P., Ikeh, M., Tilston-Lunel, N.L., Palavecino, C., Sacchettini, J.C., et al. (2012). Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. Microbiology 158, 2724-2731.   DOI
33 Fridman, M., Williams, G.D., Muzamal, U., Hunter, H., Siu, K.W., and Golemi-Kotra, D. (2013). Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cellwall charge: Stk1/Stp1 meets GraSR. Biochemistry 52, 7975-7986.   DOI
34 Glover, R.T., Kriakov, J., Garforth, S.J., Baughn, A.D., and Jacobs, W.R., Jr. (2007). The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J. Bacteriol. 189, 5495-5503.   DOI
35 Horstmann, N., Saldana, M., Sahasrabhojane, P., Yao, H., Su, X., Thompson, E., Koller, A., and Shelburne, S.A., 3rd (2014). Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis. PLoS Pathog. 10, e1004088.   DOI
36 Jeong, J.A., Baek, E.Y., Kim, S.W., Choi, J.S., and Oh, J.I. (2013). Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis. J. Bacteriol. 195, 3610-3620.   DOI
37 Kang, C.M., Abbott, D.W., Park, S.T., Dascher, C.C., Cantley, L.C., and Husson, R.N. (2005). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692-1704.   DOI
38 Kim, M.J., Park, K.J., Ko, I.J., Kim, Y.M., and Oh, J.I. (2010). Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J. Bacteriol. 192, 4868-4875.   DOI
39 Zahrt, T.C. and Deretic, V. (2000). An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol. 182, 3832-3838.   DOI
40 Kendall, S.L., Movahedzadeh, F., Rison, S.C., Wernisch, L., Parish, T., Duncan, K., Betts, J.C., and Stoker, N.G. (2004). The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84, 247-255.   DOI
41 Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R., Jr., and Steyn, A.J. (2007). Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. U S A 104, 11568-11573.   DOI
42 Laub, M.T., and Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121-145.   DOI
43 Lee, J.M., Cho, H.Y., Cho, H.J., Ko, I.J., Park, S.W., Baik, H.S., Oh, J.H., Eom, C.Y., Kim, Y.M., Kang, B.S., et al. (2008). $O_2$- and NO-sensing mechanism through the DevSR two-component system in Mycobacterium smegmatis. J. Bacteriol. 190, 6795-6804.   DOI
44 Lee, H.N., Jung, K.E., Ko, I.J., Baik, H.S., and Oh, J.I. (2012). Proteinprotein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J. Microbiol. 50, 270-277.   DOI
45 Lee, H.N., Lee, N.O., Han, S.J., Ko, I.J., and Oh, J.I. (2014). Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS One 9, e111680.   DOI
46 Leonard, C.J., Aravind, L., and Koonin, E.V. (1998). Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res. 8, 1038-1047.   DOI
47 Menon, S. and Wang, S. (2011). Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50, 5948-5957.   DOI
48 Lin, W.J., Walthers, D., Connelly, J.E., Burnside, K., Jewell, K.A., Kenney, L.J., and Rajagopal, L. (2009). Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR. Mol. Microbiol. 71, 1477-1495.   DOI
49 Malhotra, V., Okon, B.P., and Clark-Curtiss, J.E. (2012). Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. J. Bacteriol. 194, 4184-4196.   DOI
50 Mayuri, Bagchi, G., Das, T.K., and Tyagi, J.S. (2002). Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS twocomponent system, Rv3134c and chaperone ${\alpha}$-crystallin homologues. FEMS Microbiol. Lett. 211, 231-237.
51 Mir, M., Asong, J., Li, X., Cardot, J., Boons, G.J., and Husson, R.N. (2011). The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7, e1002182.   DOI
52 Mouncey, N.J. and Kaplan, S. (1998). Redox-dependent gene regulation in Rhodobacter sphaeroides $2.4.1^T$: effects on dimethyl sulfoxide reductase (dor). gene expression. J. Bacteriol. 180, 5612-5618.
53 Narayan, A., Sachdeva, P., Sharma, K., Saini, A.K., Tyagi, A.K., and Singh, Y. (2007). Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol. Genomics 29, 66-75.   DOI
54 Oh, J.I., and Kaplan, S. (1999). The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696.   DOI
55 Park, H.D., Guinn, K.M., Harrell, M.I., Liao, R., Voskuil, M.I., Tompa, M., Schoolnik, G.K., and Sherman, D.R. (2003). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833-843.   DOI
56 Ortega, C., Liao, R., Anderson, L.N., Rustad, T., Ollodart, A.R., Wright, A.T., Sherman, D.R., and Grundner, C. (2014). Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol. 12, e1001746.   DOI