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ABSTRACT

Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a 
serious infectious disease with high morbidity and mortality. In addition, the threat of 
drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to 
research for understanding the molecular nature of dynamic interactions between host and 
pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a 
well-known virulence mechanism, the molecular events to promote intracellular parasitism 
remains elusive. To combat intracellular Mtb infection, several defensive processes, 
including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes 
trigger inflammation, and undergo necrotic cell death, potentially harmful responses in 
case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from 
phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. 
Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and 
development of new paradigms of therapeutics.
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INTRODUCTION

There is a need for new therapeutics for tuberculosis (TB), the leading cause of death by a 
single infectious agent worldwide. Although much effort has been focused on controlling TB, 
multidrug- and extensively drug-resistant TB threaten human health globally. In addition, 
approximately 25% of people are estimated to have latent TB, and so are at risk of active TB 
(World Health Organization, Global Tuberculosis Report 2018).

Mycobacterium tuberculosis (Mtb) is the major pathogen of human TB and can escape from 
host immunity and phagolysosomal fusion, surviving in phagosomes (1). Mtb cell-wall lipid 
components are coordinately expressed during different stages of infection (2). Mtb infection 
triggers intracellular signaling pathways, enhancing the inflammatory cytokine/chemokine 
responses that are crucial for controlling Mtb replication and the immunopathologic 
response (3). The host-Mtb interaction alters the host immune response and triggers cell 
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death (4,5). The virulence factors of Mtb manipulate host immune, inflammatory, and cell 
death responses to facilitate intracellular growth (4).

Host protective immunity involves the control of inflammation and cell death, as well as the 
induction of antimicrobial factors (6). Autophagy is a cell-autonomous defense mechanism 
against a variety of stresses, including intracellular pathogens (7,8). Xenophagy is activated 
to target cytosolic Mtb for lysosomal delivery and degradation (9). However, Mtb evades 
xenophagy and LC3-associated phagocytosis via its virulence effectors and by modulating 
host factors (10). Mtb and its components regulate host cell death—i.e., apoptosis and 
necrosis, during infection (11,12). Generally, apoptosis is beneficial, whereas necrosis is 
detrimental, depending on the context. Mtb causes cell death by apoptosis and necrosis, 
contributing to the outcomes of infection.

This review provides insight into how Mtb manipulates host-cell autophagy, apoptosis, and 
necrosis. An appreciation of the host-Mtb interaction will enable the development of novel 
therapeutics and identification of the factors implicated in progression to active TB.

HOST REACTION TO Mtb INFECTION

Mtb is an obligate aerobic mycobacterium with a unique cell-wall structure and is capable 
of surviving within an immunocompetent host (13). As a primarily airborne disease, TB is 
transmitted person-to-person by aerosolized droplets containing Mtb (13,14). Mtb travels 
through the respiratory tract to the alveoli, where it is phagocytosed by alveolar macrophages, 
monocytes, and dendritic cells (14,15). Once phagocytosed, Mtb replicates within the 
macrophages, resulting in a robust inflammatory response followed by T-cell activation and 
recruitment of mononuclear cells and lymphocytes from neighboring blood vessels, forming 
granulomatous lesions (14,16,17). In this environment, macrophages differentiate into foamy 
macrophages filled with lipid droplets, multinucleate giant cells, and epithelial macrophages. 
Over time, the granuloma acquires a more organized structure with the formation of a fibrous 
sheath of extracellular matrix (17). Although most granulomas comprise a balance between 
Mtb and host-derived immune cells, under certain conditions, these structures progress into 
a more pathologic state characterized by diminished vascularization, increased necrosis, 
proliferation of foamy macrophages, and accumulation of caseous and hypoxic portions in 
the center (17). Rupture of these granulomas releases infectious bacilli into the airway (17,18). 
Our understanding of the granulomatous response to mycobacteria is in its infancy, and the 
mechanisms underlying the formation of protective and destructive granulomas are unclear.

The cell wall of Mtb is composed primarily of mycolic acids, which contribute to its acid 
resistance, along with smaller proportions of other lipids, including mannosyl-phosphatidyl-
myo-inositol-based glycolipids, lipomannan, and lipoarabinomannan (19,20). To transport 
proteins across the cell wall, Mtb uses the 6-kDa early secretory antigenic target (ESAT-6) 
protein family secretion (ESX) system, which is encoded by the esx-1 locus. ESAT-6 (EsxA) is 
a key virulence factor (21). Upon infection with Mtb, phagocytes, particularly macrophages, 
respond to pathogen-associated molecular patterns (PAMPs) via pattern recognition 
receptors (PRRs), such as TLRs, C-type lectin receptors (e.g., Dectin-1), and Fc receptors (22-
24). Recognition of Mtb PAMPs by PRRs triggers an intracellular signaling cascade resulting 
in activation of the NF-κB and mitogen-activated protein kinase pathways. This induces the 
production of proinflammatory cytokines and other antimicrobial effector molecules (24).
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The mechanisms by which innate immune signaling activates inflammatory and effector 
pathways during mycobacterial infection are reviewed elsewhere (24-27). The details of the 
innate immune pathways subverted by virulent Mtb are beyond the scope of this review. To 
successfully respond to Mtb infection, it is important to minimize immune-related damage 
while maintaining the host's ability to mount a protective immune response.

Mtb ESCAPE FROM PHAGOLYSOSOMAL FUSION

Mtb has evolved multiple strategies to evade host immunity and overcome macrophage 
defenses. Mtb survives within macrophages primarily by blocking phagosomal maturation 
(28,29). Mtb phagosomal vacuoles do not acquire vesicular proton-adenosine triphosphatase 
(ATPase) (30). The ESAT-6-CFP-10 secretion system is implicated in the blockade of 
phagolysosomal fusion, contributing to intracellular survival of Mtb (31). In addition, the 
function of Mtb Rv3671c, which encodes a membrane-associated protein, is related to acid 
resistance and virulence; it also maintains intrabacterial pH (32). Furthermore, the most 
abundant Mtb lipid component, trehalose 6,6′-dimycolate (TDM), inhibits phagosomal 
acidification and promotes virulence (33). Notably, injection of TDM emulsion into mice 
resulted in a similar immunopathology in the lung as that observed in mice infected with 
Mtb (34). By interacting with the Mincle receptor, TDM inhibits phagosome maturation, 
contributing to TDM-induced virulence (35). Also, Mtb-derived TDM has been shown to 
induce severe tissue disruption, vascular occlusion, cell damage, and inflammation (36).

Phagosomal maturation by fusion with lysosomes depends on vacuolar ATPase (V-ATPase), 
which acidifies the phagosomal lumen by hydrolyzing ATP (37,38). Mtb inhibits host V-ATPase 
via mechanisms involving the mycobacterial phosphatase PtpA (39). As a secreted protein, 
PtpA interacts with V-ATPase to promote Mtb survival and pathogenicity (39). PtpA promotes 
escape from Mycobacterium-containing vacuoles by inhibiting the recruitment of V-ATPase 
(40). The Mtb SecA2 accessory system is required for arrest of phagosome maturation and 
the intracellular growth of Mtb (41). In addition, the phosphatase SapM and the kinase PknG, 
which are exported by SecA2, block Mtb delivery to autophagolysosomes (42).

Host factors are required for arresting phagosome acidification during Mtb infection. Mtb-
induced STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH) 
promotes intracellular Mtb replication by inducing the degradation of V-ATPase catalytic 
subunit A (43). By contrast, disruption of Wiskott-Aldrich syndrome protein and SCAR 
homolog (WASH), a host actin nucleation-promoting factor, contributes to the accumulation 
of V-ATPase around the phagosomal vacuole by generating and associating with F-actin on 
the mycobacterial vacuole (44). Pathogenic mycobacteria subvert actin polymerization to 
escape phagosomal acidification. Cytokines are implicated in phagolysosomal acidification. 
For example, IL-12 exerted a positive, and IL-27 a negative, effect on phagosomal acquisition 
of V-ATPase and cathepsin D activity (Table 1) (45). Although arrest of phagosome maturation 
is a key virulence mechanism of Mtb, the effectors and their functions in vivo are unknown. 
Identification of the effectors that promote Mtb escape from phagolysosomal fusion will 
promote the development of therapeutics for TB.
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Mtb INTERACTIONS WITH HOST AUTOPHAGY

Autophagy is an intrinsic catabolic process of lysosomal degradation of damaged organelles 
or intracellular protein aggregates (46). There are three major types of autophagy—macro-
autophagy, micro-autophagy, and chaperone-mediated autophagy (47). Although initially 
regarded as a nonspecific bulk degradation process, autophagy is required for selective 
degradation of protein aggregates, damaged mitochondria, and intracellular pathogens 
(48,49). Importantly, selective autophagy is mediated by autophagy receptors that recognize 
signals and bind to LC3/GABARAP proteins on the autophagosome membrane. Selective 
autophagy operates via ubiquitin (Ub)-dependent or -independent pathways (49-51). As an 
antibacterial defense, xenophagy of intracellular pathogens has been reported for Mtb and 
Salmonella typhimurium (2).

Mtb interactions with xenophagy
Direct contact between Mtb and the cytosol induces xenophagy, which promotes 
clearance of pathogens (52-54). The ESX-1 secretion system of Mtb facilitates phagosomal 
permeabilization, thus activating Ub-mediated, STING-dependent xenophagy and enhancing 
resistance to Mtb infection (53). The Ub ligases Parkin and Smurf1 are required for Ub-
mediated autophagy of Mtb (54,55). The sensing of bacterial DNA by the cytosolic DNA 
sensor, cyclic GMP-AMP synthase (c-GAS), promotes the production of type I IFN (53), 
which is related to host susceptibility to chronic TB and impaired control of intracellular 
mycobacteria in human macrophages (56,57). In IFN-γ-activated macrophages, the host 
protein ubiquilin 1 is required for xenophagy activation and intracellular Mtb control, as it 
promotes accumulation of Ub, p62, and LC3 around Mtb bacilli (58). Mtb Ag-induced IFN-γ 
responses are correlated with the autophagy level in CD14-positive cells from healthy donors 
and patients with TB (59).

After ubiquitination of bacterial phagosomes, autophagy adaptors including p62 and 
NDP52 interact with Ub and deliver Mtb phagosomes to autophagosomes through LC3-
interacting regions (53,54). In lysosomal and phagosomal damage models, TRIM16 controls 
ubiquitination and autophagy by recognizing endosomal/lysosomal damage and interacting 
with the cytosolic lectin, Galectin-3. Furthermore, TRIM16 interacts with the key autophagic 
core proteins ATG16L1, ULK1, and Beclin 1, and is required for the translocation of Mtb to 
autolysosomal compartments. Importantly, TRIM16 and Galectin-3 are required to control 
intracellular Mtb infection (60). Galectin-8 regulates xenophagy through interacting with 
mTOR complex in damaged endomembrane/lysosomal damage during Mtb infection (61).
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Table 1. Mtb strategies for escaping phagolysosomal fusion
Effectors/factors Strategy Ref.
Mtb effectors

ESAT-6-CFP-10 Inhibition of phagolysosomal fusion (31)
Rv3671c Maintenance of intrabacterial pH (32)
TDM Inhibition of phagosomal acidification and promotion of virulence (33)
PtpA Interaction with V-ATPase and inhibition the recruitment of V-ATPase to 

phagosome
(39)

SapM & PknG Blockade of Mtb delivery to autophagolysosomes (42)
Host factors

CISH Degradation of V-ATPase catalytic subunit A (43)
WASH Accumulation of V-ATPase of phagosomal vacuole to escape phagosomal 

acidification
(44)

IL-27 Neutralization of lysosomal acidification and cathepsin D activity (45)

https://immunenetwork.org


Modulation of autophagy by Mtb
Mtb-derived effectors regulate host xenophagy, LC3-associated phagocytosis (LAP), and 
macroautophagy. The ESX-1 system, which includes ESAT-6 and EspB, intereferes with 
autophagy to inhibit microbial clearance from host cells (62,63). The Mtb enhanced 
intracellular survival (eis) gene is involved with the regulation of autophagic cell death and 
redox balance, but is not directly involved in host innate immunity in vivo (64). In addition, 
CpsA, a LytR-CpsA-Psr domain-containing protein of Mtb, promotes evasion of host defense 
mechanisms involving NADPH oxidase and LAP (65). The Mtb components required for 
escaping from autophagy are unclear. Further studies should characterize Mtb effectors that 
modulate autophagy.

Host factors that regulate xenophagy
Polymorphisms of GTPase family M protein (IRGM) modulate autophagy and antimicrobial 
effector function (66-69). IRGM interacts with core autophagy regulators including ULK1 and 
Beclin 1, and activates Beclin 1 to promote autophagy and host antimicrobial defense (70). 
Although xenophagy controls intracellular Mtb replication in vitro, its role in vivo is unclear. 
Mice with an Atg5 deficiency in monocyte-derived cells and neutrophils exhibited increased 
susceptibility to Mtb infection because of enhanced pathological inflammation (53,71,72). 
However, the lack of Smurf1, an E3 Ub ligase essential for xenophagy of Mtb, led to an 
increased bacterial load and accelerated mortality due to chronic Mtb infection. Therefore, 
autophagy may play a role in chronic infection in vivo (55). Galectin-8 is critical in the host 
defense against Mtb, because Galectin-8-knockout mice are susceptible to Mtb infection (61). 
Mechanistically, Galectin-8 is required for the activation of autophagy via the mTOR-AMP 
activated protein kinase pathway (61).

The C-type lectin receptor CLEC4E, which associates with TLR4, suppressed Mtb growth in 
mouse and guinea pig models (73). Importantly, combination therapy using agonists of both 
CLEC4E and TLR4 together with antibiotic treatment activated host defensive pathways at 
least partially through macroautophagy/autophagy (73). Mitochondrial sirtuin 3 promotes host 
antimycobacterial defense in macrophages and in vivo by enhancing antibacterial autophagy 
and controlling mitochondrial homeostasis (74). A variety of host factors modulate autophagy 
to enhance or inhibit the host antimicrobial response to Mtb infection (75). It is important to 
identify new therapeutic agents that restrict the survival of Mtb (Fig. 1).

MODULATION OF APOPTOSIS BY Mtb

The survival of Mtb in host cells is promoted by its interactions with the apoptosis, necrosis, 
necroptosis, and autophagy pathways (76). Apoptosis is an important mechanism by which 
host cells suppress intracellular replication of Mtb (77,78). Virulent Mtb strains evade 
apoptosis (79,80). Several mycobacterial effectors inhibit apoptosis by various mechanisms, 
thus enhancing virulence (76,78). However, apoptosis during later stages of Mtb infection is 
implicated in dissemination (81).

Several Mtb proteins/Ags induce apoptosis. ESAT-6 induces apoptosis in macrophages by 
activating the intrinsic pathway and ROS signaling (82) and by targeting miRNA-155 and the 
SOCS1 pathway (83). In addition, ESAT-6, in cooperation with phthiocerol dimycocerosate, 
induced the rupture of phagosomal membranes and host cell apoptosis, thus contributing 
to virulence (84). The PGRS domain of Rv0297 (Rv0297PGRS), which is required for 
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endoplasmic reticulum (ER) localization, is implicated in caspase-8-mediated apoptosis and 
ER stress-induced cell death (81). Wang et al. (85) reported that the Mtb Ag MPT83 (Rv2872), 
a secreted lipoprotein, activated apoptosis of macrophages via a mechanism involving the 
TLR2/p38 MAPK/cyclooxygenase (COX)-2 signaling pathway. The Mtb-derived TLR2 ligand, 
Rv1016c lipoprotein, induces macrophage apoptosis and inhibits MHC-II expression induced 
by IFN-γ, resulting in escape from immune surveillance and promoting chronic infection 
(86). The Mtb lipoprotein known as 38-kDa Ag induces MCP-1, which in turn induces MCP-1-
induced protein and enhances the production of ROS and ER-stress-induced apoptosis (87).
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Figure 1. Crosstalk between Mtb and xenophagy. 
ESX-1 secretion system damage Mtb-contained phagosome and resist from xenophagic pathway. Parkin1 and Smurf1 ubiuitinate damaged Mtb-contained 
phagosome to control Mtb survival. During Mtb infection, cGAS binds Mtb DNA and then activate type I interferons through STING pathway. In addition, damaged 
phagosome recruits Galectin-3, resulting in Galectin-3-TRIM16-ULK1-Beclin-1-ATG16L1 complex and initiation of autophagy. Galectin-8 suppresses mTOR activity 
in response to lysosomal damage. In IFN-γ-activated macrophages, ubiquilin 1 promotes ubiquitin, p62, and LC3 around Mtb and IFN-γ-induced IRGM interacts 
with autophagy machinery such as Beclin 1, ULK1, and ATG16L1. Mtb eis gene play role in regulating of autophagy. Furthermore, CpsA, protein of Mtb, evades from 
LAP and inhibits LAPosome formation during Mtb infection. In mouse and guinea pigs model, agonists for both CLEC4E and TLR4 activate autophagy, thereby 
reducing bacterial load. Sirtuin 3 enhances autophagy through TFEB and PPARA.
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Mannose-capped lipoarabinomannan inhibits host-cell apoptosis by inducing antiapoptotic 
B-cell CLL/lymphoma 2 family member A1 (88). Interestingly, the Mtb chaperone protein 
Cpn60.2 suppresses apoptosis by interacting with mitochondrial mortalin, thereby 
enhancing intracellular Mtb survival (89). The Mtb PE/PPE family protein PE_PGRS18 
promotes pathogenesis by attenuating macrophage apoptosis (90). LpqT from Mtb inhibits 
TLR2-dependent inflammatory signaling and apoptosis (91). Mycobacterial acyl carrier 
protein (Rv2244), which is involved in mycolic acid biosynthesis, inhibits macrophage 
apoptosis by suppressing the ROS/JNK signaling pathway, contributing to Mtb virulence 
(92). SP110b, an IFN-induced nuclear protein, exerts a protective effect by modulating NF-
κB-mediated inflammatory signaling and ameliorating cell death and necrotic lung lesions 
(93). The protective effect from Ag-mediated regulation of apoptosis is context dependent 
(Table 2). Further studies should clarify the role of Ags in antimycobacterial immunity. There 
is a strong relationship between apoptosis and autophagy in various biological responses. 
However, the roles of mycobacterial Ag(s) in regulating apoptosis and autophagy during Mtb 
infection are unclear.

REGULATION OF HOST CELL NECROSIS BY Mtb

The cells that are frequently observed to participate in inflammatory pathology in actively 
necrotic granulomas are thought to be neutrophils (94). Indeed, intra-alveolar neutrophil 
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Table 2. Ag-mediated regulation of host cell apoptosis
Proteins/antigen Experimental model Mechanism of action Effects Ref.
Induction of host cell apoptosis

ESAT-6 Mouse BMDM TLR2 mediated ROS-MAPK dependent caspase-9 
and caspase 3 activation

Apoptosis (82)

Human PBMCs, RAW264.7 cells Targeting the miRNA-155-SOCS1 interaction, where 
miRNA-155 expression is dependent on TLR2/NF-
κB activation

Enhance protective immune 
response

(83)

DIM THP-1 cells, human MDMs DIM contributes, along with ESX-1, to induce 
phagosomal membrane damage and rupture

Host cell apoptosis (84)

Rv0297PGRS RAW264.7 cells, HEK293T cells TLR4 dependent ER-stress-mediated cell death, 
disrupted Ca2+ homeostasis and increased NO and 
ROS leading to caspase-8 activation

Host cell apoptosis (81)

MPT83 Mouse BMDM, THP-1 cells, in vivo 
mouse model

TLR2 mediated p38 MAPK activation and COX-2 
expression

Protection from mycobacterial 
infection

(85)

Rv1016c THP-1 cells, MDMs Acts as a TLR2 ligand and inhibition IFN-γ induced 
expression of CIITA IV through TLR2 and MAPK 
signaling

Increased survival of mycobacteria (86)

38-kDa antigen Mouse BMDM, RAW264.7 cells TLR-mediated MAPK activation leading to 
MCPIP activation, ROS production and ER stress 
induction

Host cell apoptosis (87)

Inhibition of host cell apoptosis
ManLAM Mouse BMDMs, J774A.1 cell line Upregulation of Bcl2 family member A1, 

upregulation of STAT5α in a PPARγ-dependent 
manner

Attenuation of host cell apoptosis (88)

Cpn60.2 THP-1, RAW264.7 cells Interacts with mortalin, a member of HSP70 gene 
family

Anti-apoptotic action (89)

PE-PGRS18 THP-1 cells Modulation of cytokine production and 
attenuation of apoptosis

Enhance survival of M. smegmatis in 
macrophages

(90)

LpqT Mouse BMDMs, RAW264.7 cells, 
mouse in vivo study

Reduction of TLR2 mediated NF-κB and MAPK 
activation

Increase mycobacterial survival in 
macrophage and mice

(91)

AcpM; Rv2244 Mouse BMDM, RAW264.7 cells Inhibition of ROS/JNK signaling Enhance intracellular survival of Mtb (92)
SP110b THP-1, U937, HEK293T, human 

MDMs, human subject study
Downregulation of NF-κB-induced TNF-α and 
upregulation of anti-apoptotic gene expression

Less severe necrotic lung lesion and 
reduced tuberculosis susceptibility

(93)

BMDM, bone marrow-derived macrophage; CIITA, class II transactivator; HSP70, 70 kilodalton heat shock protein; MCPIP, MCP-1-induced protein; MDM, 
monocyte-derived macrophages; NO, nitric oxide; PPAR, peroxisome proliferator-activated receptor; SOCS, suppressor of cytokine signaling.
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infiltration and an excessive inflammatory response play key roles in the progression to 
active TB, which is characterized by initial caseous and later liquefactive necrosis in the 
lung (95,96). Neutrophil necrosis induced by Mtb contributes to Mtb growth in host cells, 
thus sustaining the infection (97). Interestingly, this can be ameliorated by inhibiting 
ROS production (97). Mtb infection renders human macrophages necrotic, favoring Mtb 
replication (98). Also, Mtb rapidly proliferate as a clump inside dead cells rather than in live 
cells (99). Mtb induces neutrophil extracellular traps (NETs) that promote the recruitment 
and activation of effector cells (100).

Several Mtb proteins activate necrosis of host macrophages in vivo. ESAT-6 triggers 
intracellular Ca2+ influx, inducing neutrophil necrosis and production of NETs, ultimately 
contributing to necrotic pathology and TB transmission (94). Therefore, the virulence 
protein ESAT-6 is an important therapeutic target (101). In addition, PPE11 (Rv0453), 
which has been found in infected guinea pig lung, promoted mycobacterial survival under 
stressful conditions by enhancing inflammation, organ pathology, and host-cell death (102). 
Recombinant PE17 (Rv1646) inhibits the production of proinflammatory cytokines (IL-6, 
IL-12, and TNF-α) and enhances macrophage necrosis (Table 3) (103). The degree of tissue 
necrosis and lung inflammation may be strain-specific—TLR2-deficient mice infected with 
Mtb W-Beijing exhibited increased neutrophil infiltration (104). Characterization of the 
functions of Mtb proteins and lipids in inducing host cell necrosis will provide insight into its 
virulence mechanisms (105).

The local expression of CXC chemokines such as CXCL5, primarily by epithelial cells, 
enhances the recruitment of polymorphonuclear leukocytes, promoting pulmonary 
inflammation and a defective host defense (106). Also, IL-17A expression by non-
hematopoietic cells is involved in neutrophil infiltration during mycobacterial infection (107). 
Excessive pulmonary inflammatory responses, mainly induced by neutrophils, promote 
pathologic inflammation by increasing CXCL5 and TNF-α levels and suppressing host 
defenses during Mtb infection (74). The detrimental effects of type I IFN and its receptor 
(IFNAR1) in pulmonary TB is due in part to CXCL5/CXCL1-induced infiltration of neutrophils 
(108). The molecular mechanisms by which Mtb and its effectors aggravate host cell necrosis 
during TB are unclear. Understanding the mechanisms of induction of host cell necrosis 
would facilitate the development of novel therapeutic approaches (109).

CONCLUSIONS

Several Mtb effectors participate in escape from phagolysosomal acidification. Xenophagy 
is an important lysosomal degradation pathway that activates host antimicrobial defenses. 
Mtb has evolved several mechanisms to exploit autophagy. Several Mtb effectors modulate 
apoptosis and so influence host antimicrobial defenses in a context-dependent manner. The 
roles of autophagy and apoptosis in the host-Mtb interaction are unclear. Additionally, Mtb 
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Table 3. Ag-mediated regulation of host cell necrosis
Proteins/Ag Experimental model Mechanism of action Effects Ref.
ESAT-6 Human neutrophils Ca2+ mediated calpain activation NETosis (94)
PPE11 THP-1 cells, in vivo studies Imbalance of pro-inflammatory and  

anti-inflammatory cytokines
Establishment of a persistent infection (102)

PE17 Mouse peritoneal 
macrophages, in vivo studies

Nuclear damage, loss of cytoplasmic membrane 
integrity, reduction of pro-inflammatory cytokines

Enhance bacterial survival and bacterial 
burden in mice

(103)
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and its components induce inflammation, which is implicated in both protective immune 
responses and pathogenic necrosis. Neutrophils aggravate pathologic inflammation and 
necrosis, highlighting their involvement in the pathogenesis of TB.

Several questions remain to be addressed. What are the determinant(s) of the complexity 
of the interactions between Mtb and host cells? In addition, the mechanisms by which Mtb 
and its components inhibit autophagy and apoptosis are unclear. The in vivo functions of 
autophagy need to be clarified to enable the development of autophagy-targeted adjunctive 
therapies. Do host signaling factors orchestrate apoptosis and necrosis to promote 
antimicrobial defense? Also, the molecular mechanism that controls necrosis warrants 
further investigation. Our understanding of the immune, autophagic, and cell-death 
responses during TB is incomplete. Further studies will provide insight into the molecular 
dialogue between Mtb and host cells, and so facilitate the development of novel therapeutics 
for TB and other chronic intracellular infections.
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