• Title/Summary/Keyword: Muskingum Model

Search Result 34, Processing Time 0.045 seconds

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of Apparent Shear Force (외부전단력 적용에 의한 균일대칭복단면에서의 하도추적)

  • 전무갑;지홍기
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 1996
  • A new routing computer model for the symmetric compound channel called the ASFMCS (Apparent Shear Force Muskingum-Cung Method in Symmetry) is developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force(ASF) between the deep main channel and shallow floodplain flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method (GFMC) are also compared with those of the above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing earlier rising and falling of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

The estimation of parameter using muskingum model in nak-dong river basin incorporating lateral inflow (측방유입량을 고려한 낙동강 유역의 머스킹검 매개변수 추정)

  • Jung, Chan-Yong;Jung, Young-Hun;Kim, Hyoung-Seop;Jung, Sung-Won;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2270-2275
    • /
    • 2008
  • 수문학적 하도추적법의 하나인 Muskingum 모형은 미 육군공병단(U.S. Army Corps of Engineers)에 의해서 미국 Ohio 주의 Muskingum 유역에 홍수조절계획으로 처음 사용되었으며 모형의 구조 및 입력자료의 단순성에 비하여 비교적 우수한 결과를 모의할 수 있는 것으로 알려져 있다. 1938년 McCarthy에 의해서 개발되었고 구간내 총저류량은 prism 저류와 wedge 저류로 구분하여 prism 저류는 유출량에 wedge 저류는 유입량과 유출량의 차에 직접 비례한다는 가정하에 추적식을 개발하였다. 이후 지속적인 연구가 이뤄져 1985년 O'Donnel은 측방유입량(lateral inflow)을 상류단의 유입량에 비례하는 형태로 3-매개변수 muskingum 모형을 제안하여 추적계수의 결정을 선형대수(linear algebra)에서 동차(homogeneous)연립방정식 해를 구하는 Cramer 법칙인 matrix 기법을 적용하였다. 본 연구에서는 홍수사상으로부터 측방유입량이 고려되고 추적계수 결정에 있어서 직접 계산이 가능한 O'Donnel(1985)이 제안한 3-매개변수 muskingum 모형을 적용하였다. 추적계수들의 결정은 직접 matrix 기법을 적용하였고 적용대상은 낙동강 유역의 낙동 지점을 상류단으로 구미 지점을 하류단으로 선정하였다. 홍수사상은 낙동강 유량측정 조사사업 2005년${\sim}$2007년 보고서에 수록된 수문자료를 선정하여 관측치와 계산치를 비교하였고 홍수사상에 적용하여 수문곡선을 추정하였으며, 각각의 매개변수가 추적구간에 어떠한 영향을 미치는지 변수간의 관계를 분석하였다. 또한, 관측치와 계산치의 적합도 검증은 평균제곱근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였으며, 하도 구간내 저류량은 대상구간에 대한 유입량과 유출량의 가중합에 비례한다는 선형모형을 적용하였다.

  • PDF

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of the Apparent Shear Force (ASF)

  • Chun, Moo-Kap;Jee, Hong-Kee
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.41-56
    • /
    • 1997
  • A new routing computer model for the symmetric compound channel called the ASRMCS(Apparent Shear Force Muskingum-Cunge Method in Symmetry) has been developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force (ASF) between the deep main channel and the shallow floodplan flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method(GPMC) are also compared with those of above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show a smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing early rise and fall of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

A Study on the Flood Routing using a Convective-Diffusion Model (대류-확산 모델을 이용한 홍수추적에 관한 연구)

  • 남선우;박상우
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.265-270
    • /
    • 1985
  • The prediction of a design-flood hydrograph at a particular site on a river may be based on the derivation of discharge or stage hydrograph at an upstream section, togeater with a method to route this hydrograph along the rest of river. On the other hand, flood routing methods provide a useful tool for the analysis of flooding in all but the smaller catchment, and these methods are largely stored into hydrological method and hydraulic method. Although the Muskingum Method as a hydrological method ignores dynamic effects on the flood wave, Muskingum-Cunge Method based on hydraulic method is possible to improve the method so that it gives a good approximation to the solution of the linear convective-diffusion equation. This is made on the basis of the finite diffeience equation for the Muskingum Method. In the study, the outflows predicted by Muskingum-Cunge Method are campared with the observed outflows of the Pyung Chang River.

  • PDF

Flood Runoff Analysis on the Anseong-cheon watershed using TOPMODEL and Muskingum method. (TOPMODEL과 Muskingum 기법을 이용한 안성천유역의 홍수유출분석)

  • Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.289-292
    • /
    • 2002
  • In this study, a topography based hydrologic model (TOPMODEL) was tested on the Anseong-cheon watershed. Pit in watershed was removed by liner trend surface interpolator. The DTM Analysis program is used to derived a distribution of ln($a/tan{\beta}$) values from DEM (Digital Elevation Model) using the MDF (Multiple Direction Flow) algorithm of Quinn et al (1995). Current TOPMODEL program limits are number of time step, ln($a/tan{\beta}$) increment, delay histogram ordinate and size of subcatchment pixel maps. Therefore, TOPMODEL is not suitable for application of large watershed. Muskingum method and watershed division enhance grid pixel resolution for rainfall-runoff simulation accuracy.

  • PDF

Application of Self-Adaptive Meta-Heuristic Optimization Algorithm for Muskingum Flood Routing (Muskingum 홍수추적을 위한 자가적응형 메타 휴리스틱 알고리즘의 적용)

  • Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.29-37
    • /
    • 2020
  • In the past, meta-heuristic optimization algorithms were developed to solve the problems caused by complex nonlinearities occurring in natural phenomena, and various studies have been conducted to examine the applicability of the developed algorithms. The self-adaptive vision correction algorithm (SAVCA) showed excellent performance in mathematics problems, but it did not apply to complex engineering problems. Therefore, it is necessary to review the application process of the SAVCA. The SAVCA, which was recently developed and showed excellent performance, was applied to the advanced Muskingum flood routing model (ANLMM-L) to examine the application and application process. First, initial solutions were generated by the SAVCA, and the fitness was then calculated by ANLMM-L. The new value selected by a local and global search was put into the SAVCA. A new solution was generated, and ANLMM-L was applied again to calculate the fitness. The final calculation was conducted by comparing and improving the results of the new solution and existing solutions. The sum of squares (SSQ) was used to calculate the error between the observed and calculated runoff, and the applied results were compared with the current models. SAVCA, which showed excellent performance in the Muskingum flood routing model, is expected to show excellent performance in a range of engineering problems.

Distributed Parameters Estimation of Muskiingum-Cunge Routing Model (Muskingum-Cunge 모형의 분포형 매개변수 추정)

  • Koo, Kang Min;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.73-73
    • /
    • 2016
  • 1차원 Saint-Venant 방정식을 이용한 동력학적 부정류 계산모형은 하도의 지형과 흐름에 대한 물리적 특성을 잘 반영하고 있지만 하폭이 좁고 경사가 큰 하천에서는 해의 안정성 문제를 갖고 있기 때문에 홍수 예 경보를 목적으로 하는 하도추적 방법으로 항상 적합하다 할 수 없다. 본 연구에서는 이러한 동력학적 부정류 계산모형의 대안으로서 확산파 모형의 수치해법으로 볼 수 있는 Muskingmum-Cunge 모형을 남한강에 적용하여 분포형 매개변수를 추정하는 방법을 제시하였다. 먼저 남한강의 상류인 충주 조정지댐부터 여주 수위관측소까지 가용한 각각의 횡단면에 대해 최심하상고에서 제방고까지 다양한 수위를 가정하고 수면폭과, 통수단면적 그리고 동수반경을 계산한 후 Manning 식을 이용하여 유량을 산정한다. 이때 각 단면별로 유량에 대한 통수단면적과 수면폭에 대하여 회귀분석 방법을 이용해 단면별 매개변수를 추정한다. 추정된 매개변수를 Muskingum-Cunge 모형에 적용하여 상류로부터 하류까지 각 단면별로 하도추적을 수행한다. 계산된 결과는 HEC-HMS Musking-Cunge 모형과 첨두유량의 크기 및 무차원 RMS 등을 비교하였을 때 동력학적 모형의 계산결과에 잘 일치함을 알 수 있다.

  • PDF

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph (측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.243-252
    • /
    • 2012
  • The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.

Optimal parameter derivation for Muskingum method in consideration of lateral inflow and travel time (측방유입유량 및 유하시간을 고려한 Muskingum 최적 매개변수 도출)

  • Kim, Sang Ho;Kim, Ji-sung;Lee, Chang Hee
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.827-836
    • /
    • 2017
  • The most important parameters of the Muskingum method, widely used in hydrologic river routing, are the storage coefficient and the weighting factor. The Muskingum method does not consider the lateral inflow from the upstream to the downstream, but the lateral inflow actually occurs due to the rainfall on the watershed. As a result, it is very difficult to estimate the storage coefficient and the weighting factor by using the actual data of upstream and downstream. In this study, the flow without the lateral inflow was calculated from the river flow through the hydraulic flood routing by using the HEC-RAS one-dimensional unsteady flow model, and the method of the storage coefficient and the weighting factor calculation is presented. Considering that the storage coefficient relates to the travel time, the empirical travel time formulas used in the establishment of the domestic river basin plan were applied as the storage coefficient, and the simulation results were compared and analyzed. Finally, we have developed a formula for calculating the travel time considering the flow rate, and proposed a method to perform flood routing by updating the travel time according to the inflow change. The rise and fall process of the flow rate, the peak flow rate, and the peak time are well simulated when the travel time in consideration of the flow rate is applied as the storage coefficient.