• Title/Summary/Keyword: Music classification

Search Result 241, Processing Time 0.025 seconds

A Musical Genre Classification Method Based on the Octave-Band Order Statistics (옥타브밴드 순서 통계량에 기반한 음악 장르 분류)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.81-86
    • /
    • 2014
  • This paper presents a study on the effectiveness of using the spectral and the temporal octave-band order statistics for musical genre classification. In order to represent the relative disposition of the harmonic and non-harmonic components, we utilize the octave-band order statistics of power spectral distribution. Experiments on the widely used two music datasets were performed; the results show that the octave-band order statistics improve genre classification accuracy by 2.61 % for one dataset and 8.9 % for another dataset compared with the mel-frequency cepstral coefficients and the octave-band spectral contrast. Experimental results show that the octave-band order statistics are promising for musical genre classification.

Design of MUSIC Algorithm for DOA estimation (도래방향 추정을 위한 MUSIC 알고리즘의 설계)

  • Park, Byung-Woo;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, design of MUSIC algorithm, which is one of high resolution DOA (direction of arrival) estimation techniques was studied. Generally the complex-valued correlation matrix of MUSIC algorithm is transformed to unitary matrix or matrix expansion for the real hardware implementation. Using the orthogonality between the noise subspace eigenvectors and the steering vectors corresponding to signal component, we estimate DOA with the real-valued computation between steering vectors and noise subspace eigenvectors. The DOA algorithm was designed with VHDL models with considerations of 2 elements and 1 incident wave and its simulation results are derived.

  • PDF

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Research on Stress Reduction Model Based on Transformer

  • Xu, Xin;Zhao, Yikun;Zhang, Ruhao;Xu, Tingting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3943-3959
    • /
    • 2022
  • People are constantly exposed to stress and anxiety environment, which could contribute to a variety of psychological and physical health problems. Therefore, it is particularly important to identify psychological stress in time and to find a feasible and universal method of stress reduction. This research investigated the influence of different music, such as relaxation music and natural rhythm music, on stress relief based on Electroencephalogram signals. Mental arithmetic test was implemented to create a stressful environment. 23 participants performed the mental arithmetic test with and without music respectively, while their Electroencephalogram signal was recorded. The effect of music on stress relief was verified through stress test questionnaires, including Trait Anxiety Inventory (STAI-6) and Self-Stress Assessment. There was a significant change in the stress test questionnaire values with and without music according to paired t-test (p<0.01). Furthermore, a model based on Transformer for stress level classification from Electroencephalogram signal was proposed. Experimental results showed that the method of listening to relaxation music and natural rhythm music achieved the effect of reducing psychological stress and the proposed model yielded a promising accuracy in classifying the Electroencephalogram signal of mental stress.

Direction-of-Arrival Estimation of Speech Signals Based on MUSIC and Reverberation Component Reduction (MUSIC 및 반향 성분 제거 기법을 이용한 음성신호의 입사각 추정)

  • Chang, Hyungwook;Jeong, Sangbae;Kim, Youngil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1302-1309
    • /
    • 2014
  • In this paper, we propose a method to improve the performance of the direction-of-arrival (DOA) estimation of a speech source using a multiple signal classification (MUSIC)-based algorithm. Basically, the proposed algorithm utilizes a complex coefficient band pass filter to generate the narrow band signals for signal analysis. Also, reverberation component reduction and quadratic function-based response approximation in MUSIC spatial spectrum are utilized to improve the accuracy of DOA estimation. Experimental results show that the proposed method outperforms the well-known generalized cross-correlation (GCC)-based DOA estimation algorithm in the aspect of the estimation error and success rate, respectively.Abstract should be placed here. These instructions give you guidelines for preparing papers for JICCE.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.

Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation (심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성)

  • Cho, Dong-Hee;Nam, Yong-Wook;Lee, Hyun-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.23-29
    • /
    • 2019
  • In this paper, the mood of images was classified into eight categories through a deep convolutional neural network and video was automatically generated using proper background music. Based on the collected image data, the classification model is learned using a multilayer perceptron (MLP). Using the MLP, a video is generated by using multi-class classification to predict image mood to be used for video generation, and by matching pre-classified music. As a result of 10-fold cross-validation and result of experiments on actual images, each 72.4% of accuracy and 64% of confusion matrix accuracy was achieved. In the case of misclassification, by classifying video into a similar mood, it was confirmed that the music from the video had no great mismatch with images.

A Study on the Music Schedules in the 4th Edition of KDC (한국십진분류법 제4판 음악분야 전개상의 제문제)

  • Hahn Kyung-Shin
    • Journal of Korean Library and Information Science Society
    • /
    • v.30 no.1
    • /
    • pp.31-60
    • /
    • 1999
  • The purpose of this study is to investigate the problems concerning music schedules of KDC. The object is especially arrangement of 670 music in the 4th edition of KDC. In this study, therefore, the development of 670 music division from the 1st edition to the 4th edition of KDC were examined first as the backgrounds. Then the expansion aspects and their problems of 670 music division in the 4th edition of KDC were analyzed. And based on the findings, some suggestions to solve the problems were proposed. These problems of music division of KDC originate in the lack of professional understanding of music, structural problem of KDC itself, and very comprehensive and contradictory revision policy. To make the KDC improved as standard classification scheme of Korea, mutual cooperation of the classifiers and specialists in music is inevitable.

  • PDF

FPGA Implementation of Unitary MUSIC Algorithm for DoA Estimation (도래방향 추정을 위한 유니터리 MUSIC 알고리즘의 FPGA 구현)

  • Ju, Woo-Yong;Lee, Kyoung-Sun;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the DoA(Direction of Arrival) estimator using unitary MUSIC algorithm is studied. The complex-valued correlation matrix of MUSIC algorithm is transformed to the real-valued one using unitary transform for easy implementation. The eigenvalue and eigenvector are obtained by the combined Jacobi-CORDIC algorithm. CORDIC algorithm can be implemented by only ADD and SHIFT operations and MUSIC spectrum computed by 256 point DFT algorithm. Results of unitary MUSIC algorithm designed by System Generator for FPGA implementation is entirely consistent with Matlab results. Its performance is evaluated through hardware co-simulation and resource estimation.

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation (간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.