• Title/Summary/Keyword: Mushroom growth promotion

Search Result 33, Processing Time 0.027 seconds

Plant-growth promoting traits of bacterial strains isolated from button mushroom (Agaricus bisporus) media

  • Yeom, Young-Ho;Oh, Jong-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.134-139
    • /
    • 2021
  • A diverse group of plant-growth promoting bacteria were isolated in button mushroom (Agaricus bisporus) media to investigate the plant-growth promoting traits of compounds including indole acetic acid (IAA), ammonia, 1-aminocyclopropane-1-carboxylic acid deaminase, siderophore, and hydrogen cyanide. Twenty-one bacterial strains showing positive effects for all the test traits were selected and classified to confirm bacterial diversity in the media habitat. Plant-growth promoting traits of the isolates were also assessed. All strains produced IAA ranging from 20 ㎍/mL to 250 ㎍/mL. Most of the isolates produced more than 80% siderophore. Four strains (Pantoea sp., PSB-08, Bacillus sp., PSB-13, Pseudomonas sp., PSB-17, and Enterobacter sp., PSB-21) showed outstanding performances for all the tested traits. In a bioassay of these four strains using mung bean plant, the best growth performances (23.16 cm, 22.98 cm, 2.27 g/plant, and 1.83 g/plant for shoot length, root length, shoot dry weight, and root dry weight, respectively) were obtained from the plants co-inoculated with Bacillus sp., PSB-13. The resultant data indicate that button mushroom media have got a diverse group of bacteria with plant growth promoting abilities. Thus, the media could be a good recycling resource for using to an effective bio-fertilizer.

Effect of spent mushroom substrates on Phythopthora Blight disease and growth promotion of pepper (버섯 수확후배지의 고추 생육촉진 및 역병 억제 효과)

  • Kwak, A-Min;Kang, Dae Sun;Lee, Sang-Yeop;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2015
  • Water extracts from spent mushroom substrate (SMSE)of edible mushrooms, Pleurotus eryngii, Hericium erinaceus and Lentinula edodes promoted growth of pepper seedling. Mycellial growth rate of Phythopthora capsici and Fusarium oxysporum was dramatically inhibited by 100% and 70% on PDA added with SMSE of H. erinaceus. SMSEs from H. erinaceus, P. eryngii, and L. edodes effectively reduced the disease severity of Phytophthora blight of pepper caused by Phytophthora capsici to 75%, 10% and 35%, respectively. These results suggested that SMSE from the mushrooms have dual effects that suppress phythopthora blight disease and promote plant growth of pepper.

Effect of Casing Layer on Growth Promotion of the Edible Mushroom Pleurotus ostreatus

  • Cho, Young-Sub;Weon, Hang-Yeon;Joh, Jung-Ho;Lim, Jong-Hyun;Kim, Kyung-Yun;Son, Eun-Suk;Lee, Chang-Soo;Cho, Bong-Gum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Various bacteria were isolated from the casing layer soil of the culture bed of P. ostreatus and their role in fruiting body induction of the edible mushroom, P. ostreatus, was investigated. Analysis of the bacterial community isolated from the casing layer soil revealed that the composition of genera and number of cultivable bacteria were different for each sterilizing treatment. Bordetella was predominant in the bulk soil whereas Flavobacterium was predominant after sterilization of the casing layer soil. Fluorescent Pseudomonas was predominant in the non-sterilized casing layer soil. Total number of the bacterial genera in the casing layer soil was higher than that in the bulk soil. In particular, an increase in the fluorescent Pseudomonas population was observed in the non-sterilized casing layer accompanied by induction of fruiting body and enhanced mushroom production yield. The results suggested that specific bacterial populations in the casing layer play an important role in the formation of primodia and the development of basidiome in P. ostreatus.

Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;An Gi-Hong
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.354-359
    • /
    • 2023
  • Tricholoma matsutake has been the most valuable ectomycorrhizal fungi in Asia because of its unique flavor and taste. However, due to the difficulty of artificial cultivation, the cultivation of T. matsutake has relied on natural growth in forests. To cultivate the T. matsutake artificially, microorganisms in fairy rings were introduced. In this study, we isolated 30 fungal species of microfungi from the soil of fairy rings. Among them, one single fungal strain showed a promoting effect on the growth of T. matsutake. The growth effect was confirmed by measuring the growth area of T. matsutake and enzyme activities including a-amylase, cellulase, and b-glucosidase. In comparison with control, microfungal metabolite increased the growth area of T. matsutake by 213% and the enzyme activity of T. matsutake by 110-200%. The isolated fungal strain was identified as Penicillium citreonigrum by BLAST on the NCBI database. The Discovery of this microfungal strain is expected to contribute to artificial cultivation of T. matsutake.

Plant Growth Promotion Effect of Ochrobactrum anthropi A-1 isolated from Soil of Oyster Mushroom Farmhouse (느타리버섯 재배 토양으로부터 분리한 Ochrobactrum anthropi A-1의 식물생장촉진효과)

  • Lee, Chang-Jae;Lee, Heon-Hak;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.275-281
    • /
    • 2015
  • An auxin-producing bacteria (A-1) was isolated from soils of Oyster mushroom farmhouse in Daejeon city, South Korea. The strain A-1 was classified as a novel strain of Ochrobactrum anthropi based on a chemotaxanomic and phylogenetic analyses. The isolate was confirmed to produce indole-3-acetic acid (IAA), one of auxin hormones, by TLC and HPLC analyses. The maximum concentration of IAA, $5.6mg\;L^{-1}$ was detected from the culture broth of O. anthropi A-1 incubated for 24 h at $35^{\circ}C$ in R2A broth containing 0.1% L-tryptophan. To investigate the growth-promoting effects to the crops, the culture broth of O. anthropi A-1 was inoculated to water cultures and seed pots of mung bean as well as lettuce. In consequence, the adventitious root induction and root growth of mung bean and lettuce were 2.7 and 1.4 times higher than those of the non-inoculated, respectively.

Characterization of auxin production plant growth promotion by a bacterium isolated from button mushroom compost

  • Yoo, Ji-Yeong;Lee, Heon-Hak;Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • An auxin-producing bacterial strain, designated 4-3, was isolated from waste button mushroom compost in Boryeong-si, Chungnam. The strain 4-3 was classified as a novel strain of Leucobacter tardus, based on chemotaxonomic and phylogenetic analyses. TLC and HPLC the isolated L. tardus strain 4-3 produced indole-3-acetic acid (IAA), the auxin. Maximum IAA productionof $94.3mg\;L^{-1}$ was detected for bacteria cultured in R2A medium with 0.1% l-tryptophan, incubated for 24 h at $35^{\circ}C$. Negative correlationwas observed between IAA production and pH of the culture medium, indicating that the increase inIAA caused acidification ofthe medium. The effect of supplementation with varying concentrations of l-tryptophan, a known precursor of IAA, was also assessed. production was maximal at 0.1% l, but decreased at lconcentrations above 0.2%. To investigate the plant growth-promoting effects of the bacterium, L. tardus strain 4-3 culture broth was used to inoculate water cultures and seed pots of mung bean. We found thatadventitious root induction and root growth were 2.2-times higher in thethan in the non-inoculated plants.

Effect of CaCO3 treatment on cultivation of oyster mushroom (볏짚배지에 탄산칼슘의 처리가 느타리버섯에 미치는 영향)

  • Jhune, Chang-Sung;Kong, Won-Sik;Jang, Kab-Yeul;Yoo, Young-Bok;Do, Eun-Su;Chun, Se-Chul
    • Journal of Mushroom
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • This study was carried out to investigate effect of $CaCO_3$ treatment on cultivation of oyster mushroom for suppression of green mold disease and for promotion of mycelial growth to stabilize mushroom production in field and laboratory experiment. Treatment of $CaCO_3$ in PDA media promoted mycelial growth of mushroom and suppressed that of green mold. Addition of $CaCO_3$ in rice straw substrate increased mushroom mycelial growth compared with control. In that case, growth of green mold increased up to treated 0.6% $CaCO_3$ but decreased in treatment beyond 0.8% $CaCO_3$. There were some differences on effect of $CaCO_3$ treatment according to green mold species. Trichoderma longibrachiatum was effected but T. virens was not effected by treated $CaCO_3$. Differences among mushroom strains by treated $CaCO_3$ were not shown. It is confirmed that treatment of $CaCO_3$ can promote mushroom mycelial growth but it's not clear in the field. In the result of field test, treatment of $CaCO_3$ in rice straw substrates tended to increase yield and decrease incidence of disease compared with non-treatment. These results suggest that $CaCO_3$ treatment on cultivation of oyster mushroom can be applied to take preventive steps against of green mold disease.

  • PDF

Mobilization of Heavy Metals induced by Button Mushroom Compost in Sunflower

  • Han, Chang-Hoon;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2017
  • This study focused on evaluating the phytoextraction of heavy metals (Co, Pb, and Zn) induced by bioaugmentation of button mushroom compost (BMC) in Helianthus annuus (sunflower). When the potential ability of BMC to solubilize heavy metals was assessed in a batch experiment, the inoculation with BMC could increase more the concentrations of water-soluble Co, Pb, and Cd by 35, 25, and 45% respectively, compared to those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in H. annuus was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to an increase in the growth of H. annuus by 27, 25, and 28% in Co-, Pb-, and Zn-contaminated soils, respectively. Moreover, enhanced accumulation of Co, Pb, and Zn in the shoot and root systems was observed in inoculated plants, where metal the translocation from root to the above-ground tissues was also found to be enhanced by the BMC. Evidently, these results suggest that the BMC could be effectively employed in enhancing the phytoextraction of Co, Pb, and Zn from contaminated soils.

Characteristic of Microorganism and Effect Analysis of Spent Mushroom Compost after Cultivation of Button Mushroom, Agaricus bisporus (양송이버섯 재배 후 폐상퇴비의 효과 분석 및 분리 미생물의 특성)

  • Lee, Chan-Jung;Yun, Hyung-Sik;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Lee, Soon-Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • This study was carried out to investigate the feasibility for the use of environmental-friendly materials and the effective recycling of spent mushroom compost(SMC) after cultivation of Button Mushroom, Agaricus bisporus. SMC of white button mushroom contained diverse microorganisms including fluorescent Pseudomonas sp., Bacillus sp., Tricoderma sp. and Actinomycetes. These isolates showed the extensive antifungal spectrum against plant pathogen. Among of the isolates, fungal pathogen such as Alternaria brassicicola, Phytophtora melonis, Phytophthora capsici and Colletotichum gloeosporioides strong showed strong antagonistic activity. 45.8% of the isolates were actively colonized on the pepper root and 5.8% showed rhizosphere competent of >$5{\times}10^2cfu\;root^{-1}$. The plant growth promotion ability of the collected isolates were tested in pot experiments using red pepper seedling. Among them, 62.7% showed pepper growth promoting ability and growth of pepper root showed superior to the control. The germination of pepper treated with aqueous extracts of non-harvest SMC completely inhibited at concentration of more than 33%. The sterilization of SMC resulted in higher inhibition of germination and early growth of pepper. These results suggest that spent mushroom compost(SMC) of Button Mushroom may have adequately the feasibility for the use with environmental-friendly materials.

Plant growth promotion effect of Klebsiella michiganensis Jopap-1 isolated from button mushroom bed (양송이배지로부터 분리한 Klebsiella michiganensis Jopap-1의 식물생장촉진효과)

  • Kim, Ye-Seul;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.218-224
    • /
    • 2018
  • An auxin-producing bacterium, Klebsiella michiganensis Jopap-1, was isolated from a button mushroom bed in Buyeo-Gun, Chungcheongnam-Do. The strain Jopap-1 was classified as a novel strain of K. michiganensis based on a chemotaxonomic and phylogenetic analysis. The isolated K. michiganensis Jopap-1 was confirmed to produce indole-3-acetic acid (IAA), which is one of auxin hormones by TLC and HPLC analyses. The maximum concentration of IAA ($96.05mg\;L^{-1}$) was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 48 h at $35^{\circ}C$ by HPLC quantity analysis. A negative relationship between IAA production and pH variation was estimated to show that the increase of IAA caused acidic pH in the culture. The effect of the supplement on L-tryptophan (precursor of IAA) production was observed to be highest at 0.1% concentration, but was significantly lowered above a concentration of 0.2%. To investigate the growth-promoting effects on the crops, the culture broth of E. michiganensis Jopap-1 was infected to water cultures and seed pots of mung bean and lettuce. Consequently, the adventitious root induction and root growth of mung bean and lettuce were observed to be 2.1 and 1.8 times higher than those of the control.