• Title/Summary/Keyword: Murine macrophages

Search Result 342, Processing Time 0.029 seconds

Effects of Corydalis Tuber on Synthesis of NO and $PGE_2$ in Murine Macrophage RAW 264.7 Cells Stimulated by LPS

  • Lee, Ki-Young;Park, Se-Keun;Kim, Jeong-Seon;Jang, Mi-Hyeon;Kim, Chang-Ju;Choi, Sun-Mi;Lee, Hye-Jung;Kim, Ee-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.785-791
    • /
    • 2005
  • Corydalis Tuber has traditionally been used for the treatment of water retention in the body. Administration of the aqueous extract of Corydalis Tuber has been known to be effective for the control of pain and treatment of arthritis. It was reported that Corydalis Tuber possesses anti-inflammatory activity and modulates the intestinal immune system. The effect of Corydalis Tuber against LPS-stimulated expressions of COX-2, iNOS, and $IL-1{\beta}$ in cells of the murine RAW 264.7 macrophages was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), $PGE_2$ immunoassay, and NO detection. The aqueous extract of Corydalis Tuber was shown to suppress $PGE_2$ production by inhibition on the LPS-stimulated enhancement of COX-2 enzyme activity, $IL-1{\beta}$, and iNOS expression in the RAW 264.7 macrophages. Present results suggest that Corydalis Tuber exerts anti-inflammatory and analgesic effects probably by suppressing of COX-2, iNOS, and $IL-1{\beta}$ expressions, resulting in inhibition of $PGE_2$ synthesis. Corydalis Tuber has anti-inflammatory and analgesic effects probably by suppressing of COX-2, iNOS, and $IL-1{\beta}$ mRNA expressions, resulting in inhibition of $PGE_2$ and NO synthesis.

Inhibitory Effect of Electroacupuncture on Murine Collagen Arthritis and its Possible Mechanisms

  • Fang, Jian-Qiao;Aoki, Eri;Yu, Ying;Sohma, Toshimitsu;Kasahara, Takako;Hisamitsu, Tadashi
    • Journal of Pharmacopuncture
    • /
    • v.4 no.1
    • /
    • pp.5-21
    • /
    • 2001
  • The influence of electroacupuncture (EA), a traditional Chinese medical treatment, on type Ⅱ collagen-induced arthritis (CIA) was examined in DBA/1J mice in vivo. Mice were immunized intradermally twice at the 3-week interval with bovine type Ⅱ collagen(C Ⅱ). EA stimulation, begun on the 21 simultaneously with the second immunization, was applied at the acupoint equivalent to GV4 three times a week for 3 weeks. The results showed that EA delayed the onset, attenuated the severity of arthritis, and reduced the anti-collagen antibody level. Furthermore, we investigated the impact of EA on the productions of endogenous $interleukin-1{\Beta}$ (IL-1 beta) and prostaglandin E2 (PGE2), and the levels of IL-1 beta mRNA in splenocytes and synovial tissues from C Ⅱ immunized mice on the 45 and cyclooxygenase-2 (COX-2) mRNA in lipopolysaccharide (LPS)-stimulated macrophages of normal mice by using reverse transcriptase-polymerase chain reaction (RT-PCR). EA stimulation significant inhibited the concentrations of splenic endogenous IL-1 beta and serum PGE2. The expression of IL-1 beta mRNA in spleen cells was obviously down-regulated and that in synovial tissues was modestly affected by EA. COX-2 mRNA was highly expressed in cultured peritoneal macrophages when stimulated with LPS. Previous treatment with EA also reduced LPS-stimulated induction of COX-2 mRNA. These data suggest that EA has an inhibitory effect on murine CIA, and the partial mechanism of its therapeutic result may be attributed to inhibiting the productions of IL-1 beta and PGE2 by suppression the IL-1 beta and COX-2 gene activations.

Effect of Pine needle Ethanol Extracts on the Inhibitory Activity of Atopic Dermatitis (송엽 에탄올 추출물의 아토피 저해 활성)

  • Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Jung, Seul-A;Kim, Hyun-Jee;Kang, Bo-Kyeong;Bark, Si-Woo;Kim, Tae-Wan;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • The aim of this study was to examine inhibitory effects of pine needle ethanol extracts (PNEE) on atopic dermatitis (AD). To determine inflammatory activity PNEE was added to LPS-induced murine peritoneal macrophages for an in-vitro test. In addition, anti-AD test was carried out by spreading PNEE on the dorsal skin of 2,4-dinitrochlorobenzene (DNCB)- induced BALB/c mice. It was confirmed that the nitric oxide (NO) secretion was suppressed when $1{\sim}50{\mu}g/mL$ of PNEE were added to LPS-induced murine peritoneal macrophages. Moreover, levels of TNF-${\alpha}$, IL-6, and IL-$1{\beta}$, were decreased. For the anti-AD test, PNEE alleviated symptoms of the erythema in DNCB-induced mice. Furthermore, the IFN-${\gamma}$ secretion of the group treated with PNEE was increased in splenocytes from DNCB-induced mice compared to the positive control, while IL-4 secretion diminished. Through these results, we can conclude that PNEE can inhibit AD by modulating the IFN-${\gamma}$, IL-4 cytokines production and inhibiting inflammation.

Enhanced Immune Cell Functions and Cytokine Production after in vitro Stimulation with Arabinoxylans Fraction from Rice Bran

  • Choi, Eun-Mi;Kim, Ah-Jin;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.479-486
    • /
    • 2005
  • Arabinoxylan, a complex polysaccharide in cereal cell walls, has recently received research attention as a biological response modifier. The immunomodulating effect of arabinoxylans from rice bran (AXrb) was studied using a combined process of extrusion and commercial hemicellulase treatment in order to elucidate the augmentation mechanism of cell-mediated immunity in vitro. The cytotoxicity of mouse spleen lymphocytes against YAC-1 tumor cells was significantly enhanced by treatment with AXrb at $10-100\;{\mu}g/mL$. In an attempt to investigate the mechanism by which AXrb enhance NK cytotoxicity, we examined the effect of AXrb on cytokine production by spleen lymphocytes. Culture supernatants of the cells incubated with AXrb were collected and analyzed for IL-2 and IFN-${\gamma}$ synthesis by ELISA. IL-2 and IFN-${\gamma}$ production were increased significantly. These results suggest that AXrb may induce Th1 immune responses. Macrophages play an important role in host defenses against tumors by killing them and producing secretory products, which protect against bacterial, viral infection and malignant cell growth. AXrb were examined for their ability to induce secretory and cellular responses in murine peritoneal macrophages. When macrophages were treated with various concentrations ($10-100\;{\mu}g/mL$) of AXrb, AXrb induced tumoricidal activity, as well as increasing phagocytosis and the production of NO, $H_2O_2$, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results indicate that reactive oxygen species, reactive nitrogen species, and inflammatory cytokines are likely to be the major mediators of tumoricidal activity in AXrb-treated macrophages. Therefore, AXrb may be useful in cancer immunotherapy and it is anticipated that AXrb obtained using extrusion and subsequent enzyme treatment can be used as an ingredient in nutraceuticals and cereal-based functional food.

The anti-inflammatory effect of Achyranthes japonica on lipopolysaccharide-induced inflammatory activity in murine macrophages (LPS로 유도한 대식세포의 염증반응에서 우슬의 항염증 효과)

  • Kim, Min-Sun;Jeong, Jin-Soo;Lee, Hye-Youn;Ju, Young-Sung;Bae, Gi-Sang;Seo, Sang-Wan;Cho, Il-Joo;Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.26 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Objectives : Achyranthes japonica (AJ) has been used as an anti-bacterial and anti-inflammatory agent. However, it is unclear that AJ could show the anti-inflammatory effects in macrophages. In this experiment, we studied whether AJ could inhibit the inflammatory responses in macrophages. Methods : To measure out the cytotoxicity of AJ, we performed the MTT assay. We evaluated the nitric oxide (NO) production, and cytokine production such as interleukin (IL)-1b, IL-6 and tumor necrosis factor (TNF)-a. We also investigated the cellular mechanims such as mitogen activated protein kinases (MAPK)s and nuclear factor kappa B (NF-kB). Results : AJ inhibited lipopolysaccharide (LPS)-induced NO production. AJ also inhibited production levels of IL-1b, IL-6 and TNF-a in LPS-stimulated macrophage. Finally, western blot analysis showed that AJ treatment inhibited the activation of p38 but not of extracellular signal-regulated kinase, c-jun NH2-terminal kinase and NF-kB. Conclusions : These results showed that AJ down-regulated the inflammatory response via p38 in macrophages, which suggest that AJ could be a candidate on treating inflammatory diseases.

Immunomodulatory activities of polysaccharides extracted from Cudrania tricuspidata fruits in macrophage (꾸지뽕(Cudrania tricuspidata) 열매에서 분리된 조다당의 큰포식세포 면역 활성 조절)

  • Cho, Eun-Ji;Kim, Yi-Eun;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.511-516
    • /
    • 2018
  • Macrophages play a crucial role in the host immune defense system. The current study investigated immunomodulatory activities induced by polysaccharides extracted from Cudrania tricuspidata (CTPS) fruits in murine macrophages and their role in signaling pathways. In macrophages, CTPS predominantly induced nitric oxide (NO), tumor necrosis factor-a, and interleukin-6 production. In addition, CTPS significantly up-regulated expression of the macrophage surface marker (CD80/86 and MHC class I/II). These results indicate that polysaccharides extracted from CTPS may potentially play an immunomodulatory role in macrophages via mitogen-activated protein kinases and nuclear factor-B signaling. These findings may be useful in the development of immune enhancing adjuvant materials obtained from natural sources.

Cytoskeleton Reorganization and Cytokine Production of Macrophages by Bifidobacterial Cells and Cell-Free Extracts

  • Lee, Myung-Ja;Zang, Zhen-Ling;Choi, Eui-Yul;Shin, Hyun-Kyung;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.398-405
    • /
    • 2002
  • Bifidobacteria have been previously shown to stimulate the immune functions and cytokine production in macrophages and T-lymphocytes. Accordingly, the RAW 264.7 murine macrophage cell line was used to assess the effects of Bifidobacterium on the proliferation and cytoskeleton reorganization of the cells. Cytokine production after exposure to Bifidobacterium was also monitored in both whole cells and cell-free extracts. When RAW 264.7 cells were cultured for 24 h in the presence of heat-killed Bifidobacterium bifidum BGN4, the proliferation of macrophages was slowed down in a dose-dependent manner and cell differentiation was observed by staining with the actin-specific fluorescent dye, rhodamin-conjugated phalloidin. Although EL-4 cells, a T-cell line, stimulated RAW 264.7 cells to produce TNF-${\alpha}$ and IL-6, the stimulatory activity of B. bifidum BGN4 decreased as the EL-4 cell number increased. When disrupted and fractionated BGN4 was used, the whole cell fraction was more effective than the other fractions for the TNF-${\alpha}$ production. In contrast, the cell-free extract exhibited the highest IL-6 production level among the fractions, which was evident even at a $1{\mu}g/ml$ concentration. The current results demonstrate that Bifidobacterium induced differentiation of the macrophages from the fast proliferative stage and that the cytokine production was differentially induced by the whole cells and cell-free extracts. The in vitro approaches employed herein are expected to be useful in further characterization of the effects of bifidobacteria with regards to gastrointestinal and systemic immunity.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

  • Choi, Myungwon;Ju, Jaehyun;Suh, Jae Soo;Park, Kun-Young;Kim, Kwang Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-${\alpha}$, interleukin-(IL)-$1{\beta}$, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-$1{\beta}$, TNF-${\alpha}$, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-${\alpha}$, IL-$1{\beta}$, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-$1{\beta}$, TNF-${\alpha}$, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.

The Protective Effect of Chlorophyll a Against Oxidative Stress and Inflammatory Processes in LPS-stimulated Macrophages

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Noh, Kyung-Hee;Cho, Chung-Won;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.205-211
    • /
    • 2007
  • This study was designed to investigate the suppressive effect of chlorophyll a on nitric oxide (NO) production and intracellular oxidative stress. In addition, chlorophyll a regulation of nuclear factor (NF) ${\kappa}B$ activation and inducible NO synthase (iNOS) expression were explored as potential mechanisms of NO suppression in a lipopolysaccharide (LPS)-stimulated macrophage cell line. RAW 264.7 murine macrophages were preincubated with various concentrations ($0-10\;{\mu}g/ mL$) of chlorophyll a and stimulated with LPS to induce oxidative stress and inflammatory response. Treatment with chlorophyll a reduced the accumulation of thiobarbituric acid-reactive substances (TBARS), enhancing glutathione level and the activities of antioxidative enzymes including superoxide dismutase, catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages compared to LPS-only treated cells. NO production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $12.8\;{\mu}g/mL$. Treatment with chlorophyll a suppressed the levels of iNOS protein and its mRNA expression. The specific DNA binding activities of NFkB on nuclear extracts from chlorophyll a treated cells were significantly suppressed in a dose-dependent manner with an $IC_{50}$ of $10.7\;{\mu}g/mL$. Chlorophyll a ameliorates NO production and iNOS expression through the down-regulation of NFkB activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.