• Title/Summary/Keyword: Municipal solid waste incineration ash

Search Result 43, Processing Time 0.025 seconds

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

The analysis and leaching characteristics of organic compounds in incineration residues from municipal solid waste incinerators (생활폐기물 소각시설 소각재에서의 유기오염물질 정성분석 및 용출특성)

  • Hong, Suk-Young;Kim, Sam-Cwan;Yoon, Young-Soo;Park, Sun-Ku;Kim, Kum-Hee;Hwang, Seung-Ryul
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.86-95
    • /
    • 2006
  • This study was carried out to estimate leaching characteristics of incineration residues from municipal solid waste incinerators, and determine organic compounds in raw ash, leaching water and leaching residue. A total of 44 organic compounds, which were analyzed by GC/MSD and identified by wiley library search, were contained in bottom ashes. A total of 17 organic compounds were contained in fly ashes. Bottom ash and fly ash were found to contain a wide range of organic compounds such as aliphatic compounds and aromatic compounds. Organic compounds such as Ethenylbenzene, Benzaldehyde, 1-Phenyl-Ethanone and 1,4-Benzenedicarboxylic acid dimethyl ester were detected in raw ash, leaching water and residues (from bottom ash). Organic compounds such as Naphthalene, Dodecane, 1,2,3,5-Tetrachlorobenzene, Tetradecane, Hexadecane and Pentachlorobenzene were detected in raw ash, leaching water and residues (from fly ash). Through the leaching characteristics of incineration residue, it was represented that the open dumping of incineration residue can contaminate the soil and undergroundwater. In order to prevent environmental contamination that derived from extremely toxic substances in the incineration residues, it is particularly important that the incineration residues should be treated before disposal the incineration residues. Further study and proper management about leaching characteristics of organic compounds might be required.

Metal Recycling Technologies from Fly-Ashes by the Metal Mining Agency of Japan

  • Kazuyuki, Kikuta;Nobuyuki, Masuda;Nobuyuki, Okamoto;Eiichi, Arai;Junichi, Kobayashi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.659-663
    • /
    • 2001
  • In Japan, the municipal solid waste, which amounts to 50 million tons, is generated every year and most of it is incinerated. The bottom and fly ashes are disposed to the registered disposal areas under the provisions of The Waste Disposal and Public Cleaning Law. Especially, as the fly ash from the municipal waste incineration (the primary fly ash) contains heavy metals (lead, zinc, etc) and dioxins, it cannot be disposed directly without decontamination, such as moiling, cementation, chelating and dissolving processes provided in the law. However, these procedures for decontamination, except melting, are not enough for dioxins. Even in case of melting, the fly ash from the process (the secondary fly ash) contains high concentration of heavy metals (e.g., Zn; 1-20%, Pb; 1-10%). For these reasons, Metal Mining Agency of Japan (MMAJ), a governmental organization, started a four-year project to develop the treatment technologies of these fly ashes in 1999. The purpose of the project is to establish the integrated technologies to recover the valuable metals from, and to decontaminate, the primary and secondary fly-ashes in the practical scale by utilizing the existing metallurgical processes and facilities, along with the energy saving and the reduction of the environmental impact.

  • PDF

Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性))

  • Um, Nam-Il;Han, Gi-Chun;You, Kwang-Suk;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.19-26
    • /
    • 2007
  • The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시 생활쓰레기의 계절별 조성 및 물리·화학적 특성에 관한 연구)

  • Hu, Kwan;Ko, Oh-Suk;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.105-110
    • /
    • 2001
  • To provide successful treatment policy and to apply sources for establishing plan, municipal solid wastes quantity was investigated as physical and chemical characteristics from Sunchon city. Results are like following after checking out characteristics by seasons, type. The average specific weight of municipal solid wastes is $219kg/m^3$ for combustible wastes, $391kg/m^3$ for non-combustible. Food wastes of combustible wastes contained moisture of 38.1% as standard of moisture weight per real weight, 49.6% moisture is contained in non-combustible wastes except food wastes moisture. Moisture, volatile and ash are contented by 16.9%, 68.1% and 15.0% in combustible wastes except food wastes. That means combustible wastes are available a refuse incineration. The low calorific value of only combustible waste is 2,962kca1/kg that is good for refuse incineration.

  • PDF

Slagging treatment of MSW incineration ash by plasma system (플라즈마를 이용한 도시 쓰레기 소각재 용융처리 기술)

  • 박현서;지규일;장준섭;전석구;배희주;김형진;이시창;주성준;신범수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • A plasma melting system to vitrify ny ash from MSW(Municipal Solid Waste) incinerator has been operated in SHI(Samsung Heavy Industries) since 1996. Waste feeding rate was 200kg/hr. with maximum working power of 500㎾. Because of high melting temperature of fly ash, bottom ash was used as an additive to decrease melting temperature. Data analysis for discharged slag shows volume reduction up to 30% and no leaching of heavy metals such as Pb, Cd, Cr which were an obstacle for landfill and recycle. Atmospheric pollution gas like nitrogen oxides, carbon monoxide, and PCDD/PCDF were restrained below the regulatory limit.

  • PDF

Characterization of geopolymer made of municipal solid waste incineration ash slag (도시쓰레기 소각재 슬래그로 제조된 지오폴리머의 특성)

  • Kim, Yongsung;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • In this research, the geopolymer was fabricated using municipal solid waste incineration ash (denoted as MSWIA) slag and alkali activator, NaOH and its properties were analyzed. Particularly, the effects of NaOH molarity, particle size of MSWIA, and liquid/solids ratio on the compressive strength of geopolymers were investigated. The compressive strength of geopolymers fabricated increased with finer grain size of MSWIA, and optimum value of the liquid/solids ratio was identified as 0.13. As the molarity of the NaOH increased, the compressive strength of geopolymers was increased. Even more the 20 M of NaOH, but the strength was not increased. The calcium aluminum silicate and calcium aluminum silicate hydrate zeolites were generated in the geopolymer fabricated with more than 20 M of NaOH, with some unreacted silica and unknown crystals remained. The highest compressive strength, 163 MPa, of geopolymer was appeared at conditions of curing temperature $70^{\circ}C$, and 20 M of NaOH, indicating that the high concentration of NaOH accelerates the geopolymer reaction and dense microstructure. The high-strength geopolymer fabricated in the present study is expected to contribute significantly to develop the field of cement alternative substances and to improve the recycling rate of MSWIA slag.

A Study on the Integrated Management System of Municipal Solid Waste from Seoul Metropolitan City (서울시 일반폐기물의 통합적 관리체계에 관한 연구)

  • 우세홍;홍상균
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • The integrated solid waste management for Seoul Metropolitan city can be established on the basis of the following hierarchy of priorities: 1. Efforts for source reduction should be propelled by both government and citizens to achieve the effects of resource conservation. The adequate production and consumption which are environmentally amenable and sustainable can be induced by the reasonable imposition of deposit money for waste treatment to one-time use products. To accomplish source reduction effectively, the induction of legal and institutional regulation of producer and consumer participation is requisite. 2. For resource recovery, wastes generated should be recycled as far as practicable. Community residents are responsible to separate discharge, the authorities concerned have responsibility of separate collection, and recycling industry should be assissted through tax reduction and financing. Resource separation facilities can be constructed at Kimpo Metropolitan landfill site for wastes not separately collected due to some unavoidable circumstances. 3. Garbage should be composted. Garbage is uneconomical for incineration, because it has high moisture content and low calorie, thus there is no reason for the incineration of garbage even though garbage is classified into combustibles. Composting facilities can be located at sites which are not densely populated and easily accessible to transportation, for example, Kimpo Metropolitan landfill site. Compost produced can be managed by the authorities for the use of fertilizer to a green tract of suburban land and farms. 4. Nonhazardous combustible wastes not recyclable can be utilized for thermal recovery at the incinerators which are completely equipped with pollution control devices. According to the trend of local autonomy and the equity principle of local autonomous entities, incineration facilities of minimal capacity required can be constructed at each districts of Seoul Metropolitan city which have organized local assembly. In case of Yangcheon district, the economically combustible waste quantity is about 260 tons/day which exceeds 150 tons/day, the incineration capacity of existing facility. But, from now on, waste quantity can be reduced substantially by the intensive efforts of citizens for source reduction and recycling and the institutional support of administrative organizations. Especially, it is indispensable for the government to constitute institutional and technological bases that can recycle paper and plastics form 43% of waste generated. A good time for constructing of incineration facilities for municipal solid waste can be postponed to the time that pollution control technologies of domestic enterprises are fully developed to satisfy the standards of air pollution prevention, because the life expectancy of Kimpo Metropolitan landfill site is about 25 years. Within this period, institutional improvements and technological advancements can be attained, while the air qual. ity of Seoul Metropolitan city can be ameliorated to the level to afford incineration facilities. 5. For final disposal, incombustibles and ash are landfilled sanitarily at Kimpo Metropolitan landfill site.

  • PDF