Separation of Ferrous Materials from Municipal Solid waste Incineration Bottom Ash

생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 ferrous material의 분리(分離) 특성(特性)

  • Um, Nam-Il (Korea Institute of Geoscience and Mineral Resources) ;
  • Han, Gi-Chun (Korea Institute of Geoscience and Mineral Resources) ;
  • You, Kwang-Suk (Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Hee-Chan (Seoul National University) ;
  • Ahn, Ji-Whan (Korea Institute of Geoscience and Mineral Resources)
  • Published : 2007.06.27

Abstract

The bottom ash of municipal solid waste incineration generated during incineration of municipal solid waste in metropolitan area consists of ceramics, glasses, ferrous materials, combustible materials and food waste and so on. Although the ferrous material was separated by the magnetic separation before the incineration process, of which content accounts for about $3{\sim}11%$ in bottom ash. The formation of a $Fe_3O_4-Fe_2O_3$ double layer(similar to pure Fe) on the iron surface was found during air-annealing in the incinerator at $1000^{\circ}C$. A strong thermal shock, such as that takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products and it existed as $Fe_2O_3,\;Fe_3O_4\;and\;FeS_2$. So, many problems could occur in the use of bottom ash as an aggregate substitutes in construction field. Therefore, in this study, the separation of ferrous materials from municipal solid waste incineration bottom ash was investigated. In the result, the ferrous product(such as $Fe_2O_3,\;Fe_3O_4,\;FeS_2$ and iron) by magnetic separator at 3800 gauss per total bottom ash(w/w.%) accounted for about 18.7%, and 87.7% of the ferrous product was in the size over 1.18 mm. Also the iron per total bottom ash accounted for about 3.8% and the majority of it was in the size over 1.18 mm.

도심지에서 발생하는 생활폐기물들은 재활용 가능한 목재나 iron 등을 분리시킨 후 소각장으로 보내지기 때문에 자기류나 유리류 그리고 가장 많은 양을 차지하고 있는 가연성 물질로 존재하게 된다. 하지만 소각 전 분리 공정에도 불구하고 생활폐기물에서의 iron의 함유량은 약 $3{\sim}11%$에 달하고 있다. 이러한 iron은 소각로에서 소각 처리될 경우 약 $1000^{\circ}C$의 온도(로의 내부 온도)에서 산화반응에 의해 표면에 산화물 층을 형성하게 된다. 소각된 바닥재는 water-cooling냉각 처리를 통해 냉각되며 물과 접촉한 iron 표면의 산화물 층은 심한 붕괴가 일어나 부식작용이 더욱 활발히 일어나며 많은 양의 ferrous material($Fe_3O_4,\;Fe_2O_3,\;FeS_2$)을 생성하게 된다. 이러한 iron과 ferrous material은 산화 환원 작용에 의해 부피변화를 일으키기 때문에 시멘트 골재 등으로의 재활용 시 많은 문제점을 일으킬 수 있다. 따라서 본 연구에서는 소각 바닥재를 이용하여 각 입도별 자력선별에 따른 ferrous material의 분리 특성에 대해 연구하였다. 그 결과 전체 바닥재의 약 18.7%(ferrous product; $Fe_3O_4,\;Fe_2O_3,\;FeS_2$, iron)가 자력선별(자력세기:3800gauss)에 의해 분리 되었으며 1.18mm이상의 입도에서 전체 ferrous product의 87.7%가 분포하였다. iron의 경우 전체 바닥재의 약 3.8%의 함유량을 보였으며 1.18mm이상의 입도에서 전체 iron의 99%이상이 존재하였다.

Keywords

References

  1. Ministry of Environment in Korea, 2005 The national waste generation and the present state of treatment 2004, Korea
  2. Kist Europe, 2002 : State of the art of ash and construction waste recycling in Europe and plan for cooperation, Europe
  3. J. Svoboda, J. and Fujita, T., 2003 : Recent development in magnetic methods of material separation, Minerals Engineering, 16, pp.785-792 https://doi.org/10.1016/S0892-6875(03)00212-7
  4. Chimenos, J.M. et al., 1999 : Characterization of the bottom ash in municipal solid waste incinerator, Journal of Hazardous Materials, 64, pp.211-222 https://doi.org/10.1016/S0304-3894(98)00246-5
  5. Svoboda, J. and Fujita, T., 2003 : Recent developments in magnetic methods of material separation, Minerals Engineering, 1, pp.785-792
  6. Delgado, A. L. et al., 2003 : Quality of ferrous scrap from MSW in nerators: a case study of Spain, resoures, Conservation and recycling, 40, pp.39-51 https://doi.org/10.1016/S0921-3449(03)00024-7
  7. Pecqueur, G., Crignon, C. and Quenee, B., 2001 : Behaviour of cement-treated MSWI bottem ash, Waste Management, 21, pp.229-233 https://doi.org/10.1016/S0956-053X(00)00094-5
  8. Boom R., Steffen R., 2001 : Recycling of scrap for high quality steel products, Steel research, 72, pp.91-6 https://doi.org/10.1002/srin.200100090