Liang과 Zeger는 이산형 혹은 연속형 반복측정자료를 분석하기 위한 일반화 추정방정식 (GEE)을 제안하였다 GEE모형은 범주형 반복측정자료의 모형으로 확장될 수 있으며, 이 GEE추정량은 대표본인 경우 다변량 정규분포를 따른다. 그러나 GEE는 대표본근사이론에 기초한다. 본 논문에서는 소표본인 경우 반복 측정된 순서자료에 대한 GEE추정량의 성질을 연구한다. 우리는 두가지 방법을 사용하여 두그룹의 반복 측정된 순서자료를 생성하며 모의실험을 통하여 소표본인 경우 여러 개 범주를 갖는 순서반응 자료에 대하여 GEE추정량의 1종 오류율, 검정력, 상대효율, 두 그룹의 표본크기가 다를 경우 효과, 그리고 분산 추정량의 성질등을 연구한다.
Journal of information and communication convergence engineering
/
제15권1호
/
pp.43-48
/
2017
Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: "Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?" The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.
물리적 디스플레이 기술은 인간이 열망하는 궁극의 디스플레이 기술로서 전 세계가 레이저, 플라즈마 및 반사판 등을 이용한다. 또한 양한 입체 디스플레이 기술개발을 활발하게 진행하고 있으나 광학식으로 인한 주변광의 영향, 밝기 등으로 온전한 물리적 표현에는 한계가 존재한다. 본 논문에서는 기존의 광학식과는 다른 물리적 변형을 이용한 디스플레이 기술을 문화 감성적인 측면의 접근법으로 다가선다. 2차원 평면적인 디지털 사이니즈의 한계를 극복하여 물리적으로 다변화되는 스크린 위에 동적 영상을 투사하여 3차원 실감 입체 이미지를 만들어 낼 수 있는 카멜레온(다변)형 디스플레이 기술을 개발하고 이를 이용한 영상, 전시 및 공연에 적용이 가능한 방법을 연구하고자 한다.
Journal of Advanced Marine Engineering and Technology
/
제40권2호
/
pp.138-145
/
2016
This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.
2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.
서로 다른 출처로부터 얻어진 데이터 파일들을 하나의 데이터 파일로 만드는 통계적 자료결합방법은 공통변수와 서로 다른 고유변수를 포함하여 변수들 간에 존재하는 관련성에 대해 살펴볼 수 있다. Robin (1986)이 제안한 일반회귀모형의 예측값을 이용한 통계적 결합방법은 자료에 대한 다변량 정규성을 가정하기 때문에 이 가정을 위반하는 자료를 이용하는 것은 많은 문제를 수반한다. 본 연구는 제공파일의 고유변수에 모분포를 반영하지 못하는 특이점이 존재하는 경우, 일반회귀모형을 이용한 통계적 결합방법의 대안으로 로러스트 회귀추정방법을 이용한 자료결합방법을 제안하였다. 나아가 로버스트 회귀모형을 이용한 결합방법과 일반회귀모형을 이용한 결합방법에서의 상관관계 및 결정계수 보존에 관한 성능을 비교하기 위하여 모의실험을 수행하였다.
Objective: The aim of this study is to develop a distributed representative human model(DRHM) generation and analysis system. Background: DRHMs are used for a product with multiple-size categories such as clothing and shoes. It is not easy for a product designer to explore an optimal sizing system by applying various distributed methods because of their complexity and time demand. Method: Studies related to DRHM generation were reviewed and the RHM generation interfaces of three digital human model simulation systems(Jack$^{(R)}$, RAMSIS$^{(R)}$, and CATIA Human$^{(R)}$) were reviewed. Results: DRHM generation steps are implemented by providing sophisticated interfaces which offer various statistical techniques and visualization methods with ease. Conclusion: The DRHM system can analyze the multivariate accommodation percentage of a sizing system, provide body sizes of generated DRHMs, and visualize generated grids and DRHMs. Application: The DRHM generation and analysis system can be of great use to determine an optimal sizing system for a multiple-size product by comparing various sizing system candidates.
빅 데이터 환경에서 빅데이터를 분석하기 위한 새로운 방법의 필요성이 대두되고 있다. 데이터의 크기, 다양성, 그리고 적재 속도 등의 빅데이터 특성으로 인해 모집단의 추론에서 전체 데이터의 분석이 가능해졌기 때문이다. 그러나 전통적인 통계분석 방법은 모집단으로부터 추출된 확률표본에 초점이 맞추어져 있다. 따라서 기존의 통계적 접근방법은 빅데이터 분석에 적합하지 않은 경우가 발생한다. 이와 같은 문제점을 해결하기 위하여 본 논문에서는 빅데이터분석을 위한 새로운 접근방법에 대하여 제안하였다. 특히 대표적인 다변량 통계분석 기법인 주성분 분석을 이용하여 효율적인 빅데이터분석을 위한 방법론을 연구하였다. 제안방법의 성능평가를 위하여 통계적 모의실험을 실시하였다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1171-1180
/
2014
본 논문에서는 금융분야에서 사용되고 있는 포트폴리오 위험측도인 VaR (value at risk)와 ES (expected shortfall)의 측정 방법으로 안장점근사의 적용 방법을 제시하였다. 본 연구의 특징은 금융자료에 대하여 정규분포를 가정하지 않고, 치우침을 가정한 왜정규분포를 가정하여 왜정규분포를 따르는 위험요인으로 구성된 선형 포트폴리오 위험측도에 대해 안장점근사를 실시하였다. 또한 모의실험을 통해 위험측도의 안장점근사의 정도가 매우 우수함을 확인하였다.
최대예상손실액(VaR)은 위험관리수단으로 금융에서 시장위험을 측정하는 대표적인 값이다. 본 논문에서는 다양한 자산으로 이루어진 고차원 금융자료에서 자산들 간의 의존성 구조를 잘 설명할 수 있는 성근 바인 코풀라를 이용한 VaR 추정에 대해서 논의한다. 성근 바인 코풀라는 정규 바인 코풀라 모형에 벌점화를 적용한 방법으로 추정하는 모수의 개수를 벌점화를 통해 축소하는 방법이다. 모의 실험 결과 성근 바인 코풀라를 이용한 VaR 추정이 더 작은 표본 외 예측오차를 줌을 살펴볼수 있었다. 또한 최근 5년간의 코스피 60개 종목을 바탕으로 실시한 실증 자료 분석에서도 성근 바인 코풀라 모형이 더 좋은 예측 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.