• 제목/요약/키워드: Multivariate Statistics

검색결과 656건 처리시간 0.02초

Bayesian Hypothesis Testing in Multivariate Growth Curve Model.

  • Kim, Hea-Jung;Lee, Seung-Joo
    • Journal of the Korean Statistical Society
    • /
    • 제25권1호
    • /
    • pp.81-94
    • /
    • 1996
  • This paper suggests a new criterion for testing the general linear hypothesis about coefficients in multivariate growth curve model. It is developed from a Bayesian point of view using the highest posterior density region methodology. Likelihood ratio test criterion(LRTC) by Khatri(1966) results as an approximate special case. It is shown that under the simple case of vague prior distribution for the multivariate normal parameters a LRTC-like criterion results; but the degrees of freedom are lower, so the suggested test criterion yields more conservative test than is warranted by the classical LRTC, a result analogous to that of Berger and Sellke(1987). Moreover, more general(non-vague) prior distributions will generate a richer class of tests than were previously available.

  • PDF

Omnibus tests for multivariate normality based on Mardia's skewness and kurtosis using normalizing transformation

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권5호
    • /
    • pp.501-510
    • /
    • 2020
  • Mardia (Biometrika, 57, 519-530, 1970) defined measures of multivariate skewness and kurtosis. Based on these measures, omnibus test statistics of multivariate normality are proposed using normalizing transformations. The transformations we consider are normal approximation and a Wilson-Hilferty transformation. The normalizing transformation proposed by Enomoto et al. (Communications in Statistics-Simulation and Computation, 49, 684-698, 2019) for the Mardia's kurtosis is also considered. A comparison of power is conducted by a simulation study. As a result, sum of squares of the normal approximation to the Mardia's skewness and the Enomoto's normalizing transformation to the Mardia's kurtosis seems to have relatively good power over the alternatives that are considered.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

Selection of markers in the framework of multivariate receiver operating characteristic curve analysis in binary classification

  • Sameera, G;Vishnu, Vardhan R
    • Communications for Statistical Applications and Methods
    • /
    • 제26권2호
    • /
    • pp.79-89
    • /
    • 2019
  • Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended from univariate to multivariate setup by linearly combining available multiple markers. One such classification model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by developing an algorithm that helps in identifying the important markers that are significant and true contributors. The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to provide insight about the individual marker's significance in providing a classifier rule/linear combination with good extent of classification.

다변량 통합공정관리에서 재수정 절차 (A readjustment procedure in the multivariate integrated process control)

  • 조교영;박종숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1123-1135
    • /
    • 2011
  • 다변량 통합공정관리의 기본절차는 잡음이 내재하는 공정에 수정조치를 취하여 공정편차를 백색 잡음으로 전환하도록 하여 공정제곱편차를 최소화하게 되는 것이며, 이러한 다변량 통합공정관리의 수정활동을 하는 경우 공정에 이상원인이 발생하면 관리도를 통해 이를 탐지하고 제거하게 된다. 수정된 공정은 이상원인 발생 전에는 백색잡음이지만, 이상원인 발생 후 다양한 형태의 시계열 모형으로 변환하게 된다. 만약 수정된 공정을 탐지하여 이상원인의 신호가 발생한 경우 교정활동을 통하여 이를 제거해야 하지만, 구조적으로 교정이 불가능 하거나 교정활동의 비용이 많이 발생하는 경우에는이상원인의 효과를 감안하여 수정활동을 재조정해야할 것이다. 이 논문에서는 공정모형으로 다변량 IMA(1,1)모형을 가정하고 다변량 통합공정관리 절차를 수행하는 경우 이상신호가 발생한 후 재수정 절차를 제안한다.

다변량 장기 종속 시계열에서의 이상점 탐지 (Outlier detection for multivariate long memory processes)

  • 김경희;유승연;백창룡
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.395-406
    • /
    • 2022
  • 본 논문에서는 장기 종속 다변량 시계열 자료에 대한 이상점 탐지 기법을 연구한다. 기존 다변량 시계열 이상점 탐지 방법은 단기 종속 시계열 모형인 VARMA에 기반한 방법으로, 장기억성을 띈 다변량 시계열 자료에는 적합하지 않다. 자기회귀 모형을 통해서 장기 종속성, 즉 장기억성을 고려하기 위해서는 높은 차수의 모형이 필요하고, 이는 곧 추정의 불안성으로 이어지기에 장기억성을 효율적으로 다룰 수 없기 때문이다. 따라서, 본 논문은 이러한 문제를 보완하고자 VHAR 구조에 기반한 이상점 탐지 방법을 제시하고자 한다. 또한 더욱 정확한 추론을 위해서 로버스트한 방법을 이용하여 VHAR 계수를 추정하였고 이를 활용하여 이상점을 탐지하였다. 모의실험 결과 우리가 제안한 방법론이 기존 VARMA에 기반한 방법론보다 이상점 탐지에 더 효과적임을 살펴볼 수 있었다. 주가지수에 대한 실증자료 분석에서도 기존의 방법론은 탐지하지 못하는 추가 이상점을 찾음을 확인할 수 있었다.

차원축소를 통한 다변량 시계열의 변동성 분석 및 응용 (Volatility Analysis for Multivariate Time Series via Dimension Reduction)

  • 송유진;최문선;황선영
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.825-835
    • /
    • 2008
  • 계량경제학 분야에서 널리 쓰이는 MGARCH(multivariate GARCH)모형은 여러개의 시계열자료들의 변동성을 함께 모형화한다. 그러나 변수가 많아질수록 추정해야 할 모수의 수가 급격하게 늘어나는 문제점이 있다. 본 연구에서는 인자 모형을 통해 자료의 차원을 축소시킴로써 이러한 문제를 해결하고자 하였다. 국내의 주가수익률 자료에 통계적 인자 모형과 fundamental factor model을 적용하여 각각의 의미 있는 인자들을 얻은 후 이를 MGARCH모형에 적합시켰다. 또한 두 인자모형을 바탕으로 얻어진 최종 모형들의 MSE, MAD와 VaR(Value at Risk)를 계산하여 예측력을 비교하고자 한다.

Analyzing Operation Deviation in the Deasphalting Process Using Multivariate Statistics Analysis Method

  • Park, Joo-Hwang;Kim, Jong-Soo;Kim, Tai-Suk
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.858-865
    • /
    • 2014
  • In the case of system like MES, various sensors collect the data in real time and save it as a big data to monitor the process. However, if there is big data mining in distributed computing system, whole processing process can be improved. In this paper, system to analyze the cause of operation deviation was built using the big data which has been collected from deasphalting process at the two different plants. By applying multivariate statistical analysis to the big data which has been collected through MES(Manufacturing Execution System), main cause of operation deviation was analyzed. We present the example of analyzing the operation deviation of deasphalting process using the big data which collected from MES by using multivariate statistics analysis method. As a result of regression analysis of the forward stepwise method, regression equation has been found which can explain 52% increase of performance compare to existing model. Through this suggested method, the existing petrochemical process can be replaced which is manual analysis method and has the risk of being subjective according to the tester. The new method can provide the objective analysis method based on numbers and statistic.

다차원 캔달의 타우의 통계학적 응용과 그의 해석 (On the Application of Multivariate Kendall's Tau and Its Interpretation)

  • 이우주;안재윤
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.495-509
    • /
    • 2013
  • 본 논문에서는 캔달의 타우(Kendall's tau)의 다차원으로의 확장과 그의 통계적 추론 및 해석에 대해 알아본다. 특히 다차원 캔달의 타우가 음의 값을 가질 때 의미를 해석하기 위해, 그것의 하한이 얻어지는 경우를 직관적으로 이해할 수 있도록 변수들간의 관계의 관점에서 설명하여본다. 또한 다차원 캔달의 타우를 실제 사례에 적용해 본후, 최근 Lee와 Ahn에서 연구된 d-countermonotonicity와 partially m-countermonotonic와 같은 새로운 개념을 통하여 캔달의 타우가 음의 값이 가질 때의 의미에 대해서 논의한다.

가중 포트폴리오에서의 CTE (CTE with weighted portfolios)

  • 홍종선;신동식;김재영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.119-130
    • /
    • 2017
  • 다변량 분포에서의 VaR (Value at Risk)와 CTE (Conditional Tail Expectation)에 관한 많은 연구문헌에서는 특정한 포트폴리오 구성비를 이용하여 일변량 분포로 변환하여 추정하였다. 다변량 분포에서 분위수에 관한 많은 연구가 존재한다. 그러나 분위수가 유일하게 존재하지 않으므로, VaR와 CTE의 추정에 어려움이 있다. 본 연구에서는 다변량 분위 벡터를 이용한 대안적인 VaR와 통합적인 다변량 CTE의 연구를 확장하여, 여러 종류의 포트폴리오로 구성된 다양한 비율 조합에 따른 가중 CTE 벡터들을 제안한다. 일변량에 대한 CTE 관계식을 다차원의 관계식으로 확장하고, 일변량의 관계식과의 특징과 차이점에 대하여 토론한다. 정규분포로부터 추출한 자료와 실증 예제를 통하여 본 연구에서 제안한 가중 CTE를 탐색하면서 가중 CTE의 활용성과 장점을 유도한다.