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Abstract
Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended

from univariate to multivariate setup by linearly combining available multiple markers. One such classification
model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may
mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by
developing an algorithm that helps in identifying the important markers that are significant and true contributors.
The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to
provide insight about the individual marker’s significance in providing a classifier rule/linear combination with
good extent of classification.

Keywords: multivariate receiver operating characteristic curve, precision, stepwise algorithm,
variable selection

1. Introduction

The practical problems pertaining to binary classification have paved a path to statistical methodolo-
gies with a strong mathematical base. The problem of classifying individuals/objects can be done
using a marker or a set of markers. Many researchers have developed methodologies over the past
seven decades that use univariate and multivariate setup. The present paper is confined to a graphi-
cal tool that provides an aid to allocate individuals into one of two known populations/groups is the
namely receiver operating characteristic (ROC) curve analysis. Many ideas were proposed on this
ROC curve methodology under univariate setup of which Bamber (1975), Metz (1978), Hanley and
McNeil (1982, 1983), Faraggi and Reiser (2002), Zhang (2006), Vishnu Vardhan and Sarma (2010),
Balaswamy et al. (2014), or Vishnu Vardhan and Kiruthika (2015) are a few to mention. However, in
a practical sense classification may not be appropriate by using a single marker since the information
obtained using single marker might be insufficient to draw proper conclusions. Hence, it became nec-
essary to consider available multiple markers in order to have a complete profile of an individual/object
that enables to come across a strong mathematical basis and provides an ease for better understanding
about the classification scenario (Su and Liu 1993; Liu et al., 2005; Gao et al., 2008; Sameera et al.,
2016). However, an extensive inquiry is required when several markers are being considered to clas-
sify an individual in order to overcome some practical issues such as increase in error rate, improper
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use of variables, cost effectiveness, misinterpretation and misleading conclusions. This leads to the
use of an important procedure to choose a subset of markers that are validated and support the criteria
of the investigator. In statistical literature, such a procedure is coined as the ‘screening’ of important
markers which is a well-known principle. Usually the screening process refers to thorough monitor-
ing on the role of markers by means of forward, backward and stepwise algorithms that contribute
towards minimizing the error rate and address the practical issues mentioned above. Sameera et al.
(2016) proposed a Multivariate extension of ROC methodology to provide a linear combination using
Minimax principle and proved that their model performs better than the model given by Su and Liu
(1993). The process of selecting a subset of important markers was not addressed till date. This paper
develops a stepwise algorithm for the multivariate ROC (MROC) curve (Sameera et al., 2016). The
proposed methodology encompasses MROC framework, precision of the linear combination (PLC)
(Sameera and Vishnu Vardhan, 2016) and a strategy designed for variable selection. The schematic
view of the paper is divided into two parts. The first part details the MROC and PLC methodologies;
the second provides a variable selection algorithm that uses the first part and its practical implications.

2. Methodology

2.1. Multivariate receiver operating characteristic methodology

Let X1, X2, . . . , Xk be the ‘k’ markers involved in the study. Let Π0 and Π1 be the two populations
assumed to follow multivariate normal distribution with mean vectors µ0, µ1; covariance matrices Σ0,
Σ1 and sample sizes n0, n1 respectively and n = n0 + n1. The basic definition of MROC curve is that
it is a tradeoff between 1 − Specificity (1 − S p) and sensitivity (S n). The expression for MROC curve
is given as

y(x) = Φ

b
′
(µ1 − µ0) − Φ−1(1 − x)

√
(b′Σ0b)√

(b′Σ1b)

 , (2.1)

where x is (1 − S p) and b is the vector of coefficients of linear combination of markers given as
b = [tΣ1 + (1 − t)Σ0]−1(µ1 − µ0); 0 < t < 1 where t-value is obtained using trial and error method and
optimal ‘t’ is identified with the help of Youden’s index, J = max[S n + S p − 1]. S n and S p are the
probabilities of correct identification of the two groups ‘0’ and ‘1’ respectively.

S n = Φ

 b
′
µ1 − c√
(b′Σ1b)

 , (2.2)

S p = Φ

 c − b
′
µ0√

(b′Σ0b)

 , (2.3)

where

c =
b
′
µ1

√
(b′Σ0b) + b

′
µ0

√
(b′Σ1b)√

(b′Σ1b) +
√

(b′Σ0b)

is the cut point obtained at optimal ‘t’. Therefore, ‘c’ can be termed as optimal cut point. A test’s
performance can be explained by using an accuracy measure, area under the curve (AUC) which is
defined as average sensitivity over the range of specificities and given as

AUC = Φ

 b
′
(µ1 − µ0)√

b′(Σ1 + Σ0)−1b

 . (2.4)
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AUC lies between 0 and 1 and a test is said to be perfect test if its AUC is equal to 1; in addition, a
test’s worst scenario can be observed when AUC = 0.5.

2.2. Precision of linear combination

Once the linear combination of markers is obtained, its validity can be checked using the concept of
PLC proposed by Sameera and Vishnu Vardhan (2016). PLC is based on an F ratio that comprises
correlation measures to determine if the obtained linear combination is adequate for classifying indi-
viduals/objects into one of the two classes. The F ratio is obtained for testing the significance of the
contribution of samples after a linear combination is considered through analysis of variance method,

F =
n1 + n0 − k − 1

k − 1
R2(1 − r2)

(1 − R2)(1 − r2)
∼ F(k−1,n1+n0−k−1). (2.5)

Here, ‘R2’ indicates the multiple correlation coefficient and ‘r2’ indicates the correlation within sam-
ples. The present paper is dedicated in developing a stepwise methodology to select ‘p’ important
markers among a given set of ‘k’ markers using the concept of PLC. The reason for considering PLC
as selection criterion is that it is specific to the MROC model and determines the precision with which
the linear combination can classify an individual/object. The main objective is to combine markers
to identify the classes better the use of this F ratio given in equation (2.5) is justified. In addition to
testing the significance of the linear combination, it is mandatory to test the significance of individual
markers in a variable selection. To meet this purpose, the partial F-statistic is formulated to validate
the importance and role of individual markers in the linear combination. The partial F for marker ‘l’
when ‘k’ markers are considered in the model is defined in (2.6), where R2

l.12,...,l−1,l+1,...,k is the multiple
correlation coefficient between marker ‘l’ on markers ‘1, 2, 3, . . . , l − 1, l + 1, . . . , k′.

Partial Fl.12,...,l−1,l+1,...,k =
n1 + n0 − k − 1

k − 1

R2
l.12,...,l−1,l+1,...,k(1 − r2)(

1 − R2
l.12,...,l−1,l+1,...,k

)
(1 − r2)

∼ F(k−1,n1+n0−k−1). (2.6)

2.3. Marker (variable) selection - stepwise algorithm

In usual variable selection algorithms, initially a single variable will be included in the model for
significance. The same logic cannot be applied in the proposed stepwise algorithm since it is based
upon the concept of Precision which depends on correlation measures. Hence, it is imperative to begin
with a pair of markers (variables) instead of a single marker. The following steps detail the procedural
flow of how the algorithm is executed.

• Algorithm

1. List out the
(

k
2

)
combinations of markers.

2. Compute the F ratio using equation (2.5) for the listed
(

k
2

)
combinations and select the combination

that has the highest F-value which exceeds F(1,n0+n1−2) at a fixed level of α = 0.05 (say). If none
of the combinations have a significant F-value, select the combination that has highest F-value
among the combinations. This is to allow a pair of markers to initially enter the model and be
eliminated in the later stages if observed as insignificant. Let the markers included in the model be
‘k1’ and ‘k2’.

3. In order to select the next marker that can be included into the model compute partial F using
equation (2.6) for each of the remaining markers. Select the marker with maximum partial F-value
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Figure 1: Logical process of the stepwise algorithm.

which is significant at fixed level αIN. If no markers are found to be significant, then the process is
terminated and the linear combination cannot be considered if its F ratio is insignificant.

4. Now, conducting a backward elimination step will help to remove any insignificant marker that is
added to the model. To achieve this, compute the partial F of markers which are included in the
model and remove that marker which has the least insignificant partial F ratio at a fixed level αOUT.

5. Repeat steps 3 and 4 till a stage comes where no marker can be added into/removed from the
model.

Figure 1 details out the logical process of the proposed stepwise algorithm.
Using the algorithm given in Figure 1, a subset of markers can be identified and linearly combined

to arrive at a classification rule for classification of new individuals/objects. For illustration purposes
in real datasets, the αIN and αOUT values are considered to be 0.05 and 0.10 respectively. However,
the choice of αIN and αOUT can be varied upon experimentation. The next section depicts the use of
the proposed methodology with the help of real and simulation datasets.

3. Results and discussion

3.1. Real datasets

The functionality of the proposed stepwise algorithm is demonstrated using three datasets by Statlog
Heart data (Michie et al., 1994), Norton - Neonatal audiology data (Norton et al., 2000) and Vertebral
Column data (Guilherme and Ajalmar 2011). Further, the Vertebral column dataset contains three
categories of individual status. For the present context of binary classification, it is divided into two



Selection of markers-MROC curves 83

segments, one with samples that belong to Spondylolisthesis (SL) and Normal individuals and the
other comprised of Normal and Disk Hernia individuals.

A neonatal dataset is used to provide better understanding about the iterative steps of the proposed
stepwise algorithm. An R code is developed to perform the stepwise algorithm where the first column
in the data frame holds the status of the individual and subsequent columns contain markers in the
following order: 2 = ear, 3 = sitenum, 4 = currage, 5 = gender, 6 = DPOAE 65 at 2kHz (y1), 7 =
TEOAE 80 at 2kHz (y2), and 8 = ABR (y3).

• Iteration 1: There are 7 markers in the study, 7C2 = 21 combinations are listed. On computing
the F ratio (p-values) for the listed combinations, the combination 6, 8 is observed to have the
highest significant F ratio (F ratio = 10.2102, p-value = 0.001). Hence, the markers in the model
are DPOAE 65 at 2kHz (y1) and ABR (y3).

• Iteration 2: The process of forward selection is executed for the variables 2, 3, 4, 5, and 7. At this
stage, the corresponding F and p-values are computed and marker 7, which has highest partial F
(partial F ratio = 561.7274, p-value = 0.000) is appended to the previously identified combination
6, 8. Now, the subset of markers in the model is 7, 6, 8 = TEOAE 80 at 2kHz (y2), DPOAE 65 at
2kHz (y1), ABR (y3).

• Iteration 3: Backward elimination is executed in this iteration to examine if the included markers 7,
6, and 8 are significant enough to remain in the model. The partial F and p-values for these markers
are found to be significant and are retained.

• Iteration 4: The process of forward selection is repeated again on markers 2, 3, 4, and 5 of which
marker 2 is included into the model because of its significant partial F-value (partial F ratio=
4.3488, p-value = 0.004).The markers in the model at this stage are 2, 7, 6, 8 = ear, TEOAE 80 at
2kHz (y2), DPOAE 65 at 2kHz (y1), ABR (y3).

• Iteration 5: This step verifies the significance of the included markers; consequently, it is shown
that all are significant and allowed to remain in the model.

• Iteration 6: In this step, the significance of the markers 3, 4, and 5 is tested for possible inclusion
into the model. As none of the markers are significant, the iterative procedure is terminated and the
final list of markers involved in the model contain 2, 7, 6, and 8 i.e., ear, DPOAE 65 at 2kHz (y1),
TEOAE 80 at 2kHz (y2), and ABR (y3).

In addition to the above described iterative procedure for the Neonatal dataset, the model’s signifi-
cance is tested using PLC. The full model is observed to provide an accuracy of 68.39% but the linear
combination obtained in this case is found to have an insignificant F-value (1.1953 sig. = 0.305). The
application of a stepwise algorithm helped identify a subset of 4 markers and the linear combination is
observed to be significant with an accuracy of 66.07%. However, the AUC of a linear combination can
be considered and interpreted accurately only if its corresponding linear combination is significant.
Further, the use of such an insignificant linear combination leads to the misinterpretation of markers
and misleads the conclusions. It is better to consider the AUC whose linear combination is proven to
be significant along with individual markers’ significance. The results obtained for the Heart dataset
show that the accuracy is 93.66% when all 13 markers are included in the full model. However, the
linear combination in this case does not have a significant F-value. On the use of proposed algorithm,
7 markers are included in the model and observed to have a significant/validated linear combination.
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Table 1: Coefficients and partial F-values for full model and stepwise model - real datasets

Dataset Full model Stepwise model
Variables Coefficients Partial F sig. Variables Coefficients Partial F sig.

Neonatal

Ear −0.0963 0.4878 0.818 Ear −0.1100 4.3488 0.005

(n = 5056)

sitenum 0.2264 5.6181 0.000 y2 0.0258 267.4902 0.000
currage 0.0295 5.6410 0.000 y1 0.0405 268.1827 0.000
gender −0.0350 0.2889 0.942 y3 0.1574 7.0262 0.000

y1 0.0410 29.7824 0.000
y2 0.0210 29.8079 0.000
y3 0.1817 1.3841 0.217

Model F (sig.) = 1.1953 (0.305NS) Model F (sig.) = 5.3341 (0.001*)

Heart

Age −0.0220 0.2128 0.998 nMBV 1.2523 2.2158 0.042

(n = 270)

rBP 0.0187 0.0906 1.000 CPT 0.8904 3.2811 0.004
SC 0.0051 0.0712 1.000 EIA 1.3849 4.2655 0.000

MHR −0.0252 0.2792 0.992 SPSTs 0.5759 9.8091 0.000
Oldpeak 0.4243 0.3525 0.978 Oldpeak 0.5194 11.2808 0.000
nMBV 1.2687 0.1359 1.000 Sex 1.0877 3.1066 0.006

thal 0.5344 0.2190 0.997 Thal 0.5123 7.0360 0.000
Sex 1.3227 0.1355 1.000
CPT 0.8294 0.1260 1.000
FBS −0.7239 0.0349 1.000

rECGr 0.3584 0.0397 1.000
EIA 1.0912 0.1590 0.999

SPSTs 0.3983 0.3353 0.982
Model F (sig.) = 0.4897 (0.920NS) Model F (sig.) = 7.2033 (0.000*)

Spondylolisthesis

PI 5.3239 21972280 0.000 PT −12.3646 26133190 0.000

(n = 250)

PT −5.3321 8470798 0.000 SS −12.3594 37534480 0.000
LLA 0.0903 1.9174 0.092 PI 12.3776 67786610 0.000
SS −5.3588 12166540 0.000 LLA 0.0740 5.8392 0.000
PR −0.1123 0.5763 0.718 GS 0.1282 4.5012 0.002
GS 0.1006 1.5598 0.172

Model F (sig.) = 2.6084 (0.026*) Model F (sig.) = 3.4729 (0.009*)

Disk Hernia

PI 14.8544 52420430 0.000 LLA −0.0321 18.3480 0.000

(n = 160)

PT −14.7483 19189290 0.000 PT −14.7275 24337630 0.000
LLA −0.0368 15.2383 0.000 PI 14.8343 66484970 0.000
SS −15.0232 35695070 0.000 SS −15.0035 45272420 0.000
PR −0.1483 2.1034 0.068 PR −0.1484 2.6678 0.034
GS 0.0356 0.8572 0.511

Model F (sig.) = 3.7778 (0.003*) Model F (sig.) = 4.7639 (0.001*)

The accuracy of this stepwise model is 92.59% which when compared to the accuracy of the full
model leads to a conclusion that the stepwise model is sufficient for classification. In some situations,
we may come across a case where the linear combination will be significant for the full model. But
it requires further investigation of the individual markers’ significance. The support of datasets from
the Vertebral Column data is taken to show this kind of scenario. With respect to the Spondylolis-
thesis and Disk Hernia datasets, the linear combinations of full model are noticed to be significant
at 94.77% and 89.61% respectively. However, 3 markers (LLA, PR, and GS) from Spondylolisthesis
and 2 markers (PR and GS) from Disk Hernia are found to have insignificant partial F-values. In
Spondylolisthesis dataset, the elimination of marker PR from the model resulted in the extraction of
the actual contribution of other markers LLA and GS, which are observed to be significant in a step-
wise model. Similarly in the Disk Hernia dataset, the removal of marker GS from the model helped
extract the true contribution of marker PR. The accuracies of stepwise models for Spondylolisthesis
and Disk Hernia datasets are 91.92% and 89.49%, respectively with minimum discrepancy from full
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Table 2: Measures of MROC curve and optimal cutpoint - Real datasets

Dataset Model Opt c (1 − S p, S n) AUC

Neonatal Full 0.6012 (0.3673, 0.6327) 0.6839
Stepwise −1.2829 (0.3838, 0.6162) 0.6607

Heart Full 7.2733 (0.1377, 0.8623) 0.9366
Stepwise 8.6494 (0.1508, 0.8492) 0.9259

Spondylolisthesis Full −9.1092 (0.1057, 0.8943) 0.9477
Stepwise 6.0845 (0.1259, 0.8741) 0.9192

Disk Hernia Full −23.2065 (0.1845, 0.8155) 0.8961
Stepwise −23.1334 (0.1859, 0.8141) 0.8949

MROC = multivariate receiver operating characteristic; AUC = area under the curve.

(a) Neonatal data (b) Heart data

(c) Spondylolisthesis data (d) Disk Hernia data

Figure 2: MROC curves for full model and stepwise method - Real Datasets. MROC = multivariate receiver
operating characteristic

models. This example shows the need to validate every marker included in the model even though a
significant linear combination is witnessed.

Table 1 provides the coefficients and partial F along with significance that are computed for all
datasets; in addition, Table 2 lists the measures of the MROC curve and the optimal cut point for the
considered datasets. Accordingly, Figure 2 visualizes the MROC curves. The MROC curves which
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are displayed in Figure 2 support the above given description.

3.2. Simulation study

Simulation studies detail the algorithmic proposed for variable selection as well as observe the sensi-
tivity of αIN and αOUT. Here, two datasets were generated and two stepwise models were produced
by considering two combinations for the level of significance: αIN = 0.05 & αOUT = 0.10 (Model 1)
and αIN = 0.01 & αOUT = 0.05 (Model 2). The mean vectors and covariance matrices for groups ‘0’
and ‘1’ are

µ0 =



1.4986
3.3835

38.4541
1.5581
−8.9171
−11.7704
−3.8821


, µ1 =



1.4631
3.7986

38.5984
1.5704
−4.8718
−7.9295
−3.2761


,

Σ0 =



0.2500 0.0048 −0.0120 0.0002 0.0936 −0.1631 0.0179
0.0048 2.8920 −1.4424 −0.0087 0.3218 0.3472 −0.2406
−0.0120 −1.4424 11.6826 0.0466 −2.3629 −1.9465 0.0230

0.0002 −0.0087 0.0466 0.2467 0.0515 0.1651 0.0073
0.0936 0.3218 −2.3629 0.0515 60.5546 28.0952 1.0964
−0.1631 0.3472 −1.9465 0.1651 28.0952 49.2620 0.7217

0.0179 −0.2406 0.0230 0.0073 1.0964 0.7217 2.8415


,

Σ1 =



0.2503 −0.0210 −0.0389 0.0111 −0.0084 −0.7241 −0.0304
−0.0210 2.0673 −1.6133 0.0008 −1.0247 −1.2006 −0.6255
−0.0389 −1.6133 11.0467 0.1960 3.2611 4.5973 1.1885

0.0111 0.0008 0.1960 0.2467 0.0149 0.4264 0.1159
−0.0084 −1.0247 3.2611 0.0149 73.6316 59.3241 3.7913
−0.7241 −1.2006 4.5973 0.4264 59.3241 97.4734 5.0979
−0.0304 −0.6255 1.1885 0.1159 3.7913 5.0979 2.9501


.

Table 3 provide the coefficients, partial F-values along with significance and the precision of each
model.

In simulation 1, the full model with 7 markers is observed to have an insignificant F ratio (0.7883
sig. = 0.579). The stepwise models 1 and 2 are observed to be significant and contain a subset of three
significant markers that provide 64.86% accuracy. In simulation 2, the full model is insignificant (F
ratio = 0.7748, sig. = 0.589) with an AUC of 63.73%. Stepwise Model 1 is observed be to significant
(F ratio = 4.0076, sig. = 0.007) and includes 4 markers with an accuracy of 63.72% while Stepwise
Model 2 includes only 3 markers with an accuracy of 63.67% with a loss of 0.1% accuracy compared
to the Stepwise Model 1. The simulation show the need for the identification of significant markers to
understand true classification ability of the model. The MROC curves are depicted in Figure 3.

4. Discussion

The present paper provides a variable selection procedure for a multivariate extension of ROC curve
technique known as MROC curve analysis. The idea behind the concept is to identify a subset of
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Table 3: Coefficients and partial F-values for full model and stepwise model - Simulation datasets

Dataset Simulation 1 (n = 2200) Simulation 2 (n = 1000)
Variables Coefficients Partial F sig. Variables Coefficients Partial F sig.

Full Model

X1 0.2665 0.2134 0.973 X1 −0.1008 0.2621 0.954
X2 0.0881 2.1755 0.043 X2 0.2519 0.7317 0.624
X3 0.0400 0.1913 0.979 X3 0.0550 0.6900 0.658
X4 −0.0148 2.2509 0.036 X4 0.1015 0.1338 0.992
X5 0.0253 12.8950 0.000 X5 0.0299 6.2444 0.000
X6 0.0338 12.9578 0.000 X6 0.0152 6.5322 0.000
X7 0.1607 0.7327 0.623 X7 0.1947 0.7925 0.576

Model F (sig.) = 0.7883 (0.579NS) Model F (sig.) = 0.7748 (0.589NS)

Stepwise Model 1 X5 0.0269 306.0346 0.000 X1 −0.0855 2.9122 0.033

(αIN = 0.05 & X6 0.0306 302.3586 0.000 X5 0.0217 79.2230 0.000

αOUT = 0.10) X7 0.1456 9.7466 0.000 X6 0.0281 76.0753 0.000
X7 0.1696 7.4475 0.000

Model F (sig.) = 6.037 (0.002*) Model F (sig.) = 4.0076 (0.007*)
Stepwise Model 2 X5 0.0269 306.0346 0.000 X5 0.0273 171.8816 0.000

(αIN = 0.01 & X6 0.0306 302.3586 0.000 X6 0.0226 174.2524 0.000
αOUT = 0.05) X7 0.1456 9.7466 0.000 X7 0.1696 17.4699 0.000

Model F (sig.) = 6.037 (0.002*) Model F (sig.) = 5.274 (0.005*)

Table 4: Measures of MROC curve and optimal cutpoint - simulation datasets

Dataset Model Opt c (1 − S p, S n) AUC

Simulation 1
Full −1.0277 (0.3918, 0.6081) 0.6486

Stepwise 1 −1.0277 (0.3918, 0.6081) 0.6486
Stepwise 2 −1.0277 (0.3918, 0.6081) 0.6486

Simulation 2
Full −1.1141 (0.4007, 0.5992) 0.6373

Stepwise 1 −1.1784 (0.4006, 0.5993) 0.6372
Stepwise 2 −1.0570 (0.4010, 0.5989) 0.6367

MROC = multivariate receiver operating characteristic; AUC = area under the curve.

(a) MROC curves - Simulation 1 (b) MROC curves - Simulation 2

Figure 3: MROC curves for full model and stepwise method - simulation datasets. MROC =multivariate receiver
operating characteristic.

markers that provide true accuracy and a valid classifier rule/linear combination when combined. The
proposed stepwise methodology is supported with the help of real datasets and a simulation study. Two
cases are discussed, one when the obtained linear combination is insignificant and required to identify
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the subset that can provide a significant linear combination (Neonatal dataset and Heart dataset) and
the other when the linear combination is significant, but also contains insignificant markers that in-
fluence the performance of the linear combination (Spondylolisthesis and Disk Hernia datasets). The
sensitivity of αIN and αOUTare observed using simulation studies. The observed results show that the
linear combination obtained using a stepwise algorithm is observed to have a better significance than
the full model. The algorithm identified significant markers that help classify individuals into two
groups.
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