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Abstract
Mardia (Biometrika, 57, 519–530, 1970) defined measures of multivariate skewness and kurtosis. Based on

these measures, omnibus test statistics of multivariate normality are proposed using normalizing transformations.
The transformations we consider are normal approximation and a Wilson-Hilferty transformation. The normaliz-
ing transformation proposed by Enomoto et al. (Communications in Statistics-Simulation and Computation, 49,
684–698, 2019) for the Mardia’s kurtosis is also considered. A comparison of power is conducted by a simula-
tion study. As a result, sum of squares of the normal approximation to the Mardia’s skewness and the Enomoto’s
normalizing transformation to the Mardia’s kurtosis seems to have relatively good power over the alternatives
that are considered.

Keywords: goodness-of-fit test, Mardia’s kurtosis, Mardia’s skewness, multivariate normality,
power comparison

1. Introduction

Assessing the assumption of multivariate normality is an important issue in statistical research, espe-
cially in classical multivariate analysis. A vast number of test procedures for multivariate normality
are found in the literature. For a general review, some references are Henze and Zirkler (1990), Henze
(2002), Thode (2002, Chapter 9), and Srivastava and Mudholkar (2003). Comparative studies in
power are done in Horswell and Looney (1992), Romeu and Ozturk (1993), Mecklin and Mundfrom
(2005), Farrell et al. (2007), and Hanusz et al. (2018).

The Henze and Zirkler (1990) test is sometimes recommended as a formal test for multinormality
because its invariance and consistency are proven theoretically and it has relatively good power across
a wide range of alternatives (Mecklin and Mundfrom, 2005; Farrell et al., 2007). However we also
need some supplementary or less formal procedures to follow up such as some graphical procedures
to diagnose possible deviations from normality.

The classical Jarque and Bera (1980) test is a popular test for univariate normality. The test is
the sum of squares of the standardized univariate skewness and kurtosis using their asymptotic mean
and variance, which is asymptotically distributed as a χ2-variate. It is also known as the D’Agostino
and Pearson (1973) or the Bowman and Shenton (1975) test in Statistics. The Jarque and Bera test is
emphasized especially in Econometrics and its modifications are proposed by Urzua (1996), Gel and
Gastwirth (2008), and Stehlı́k et al. (2012).
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D’Agostino and Pearson (1973, 1974) proposed sum of transformed skewness and kurtosis to
test univariate normality. They used the transformation of D’Agostino (1970) for skewness and the
Anscombe and Glynn (1983)’s transformation for kurtosis (Kim, 2016). Doornik and Hansen (2008)
also derived a similar type of statistic using a transformation from Shenton and Bowman (1977) to
kurtosis. They claimed that their test tried to take care of the small sample dependence between
skewness and kurtosis.

Mardia (1970, 1974) procedures are a common test for multivariate normality in regard to skew-
ness or kurtosis. The skewness or kurtosis approach can provide direct measure of departure from
normality with strong point over other procedures. Baringhaus and Henze (1992) studied the limit
distribution of the Mardia’s skewness under some alternatives. Henze (1994) obtained the limiting
non-null distribution of Mardia’s kurtosis.

Mardia and Foster (1983) also considered statistics of sum of the transformed multivariate skew-
ness and kurtosis. In this paper, we investigate a multivariate version of the Jarque-Bera type test based
on the Mardia’s skewness and kurtosis, and statistics of sum of the transformed multivariate skewness
and kurtosis like done in Mardia and Foster (1983) using some normalizing transformations. Section
2 describes the transformations we use and presents test statistics for multivariate normality. Section 3
contains a comparison of power performances of the test statistics through a simulation study. Section
4 ends the paper with concluding remarks.

2. Test statistics

Let X1, . . . ,Xn be a random sample of size n from a p-dimensional population, and let Np(µ,Σ) be a
p-variate multivariate normal distribution with mean vector µ and covariance matrix Σ. We want to
test the null hypothesis

H0 : X1, . . . ,Xn is a sample from Np(µ,Σ) for some µ and Σ.

Let

X̄ =
1
n

n∑
j=1

X j, S =
1
n

n∑
j=1

(
X j − X̄

) (
X j − X̄

)′
, (2.1)

be a sample mean vector and a sample covariance matrix, respectively.
According to Mardia (1970, 1974), the multivariate measure of skewness b1,p and kurtosis b2,p are

defined as

b1,p =
1
n2

n∑
i=1

n∑
j=1

{(
Xi − X̄

)′
S−1

(
X j − X̄

)}3
, (2.2)

and

b2,p =
1
n

n∑
j=1

{(
X j − X̄

)′
S−1

(
X j − X̄

)}2
, (2.3)

where X̄ and S are defined in (2.1). Mardia (1970) showed

Ms(b1,p) =
nb1,p

6
d→ χ2

(
p(p + 1)(p + 2)

6

)
(2.4)
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and

n(b2,p − p(p + 2))2

8p(p + 2)
d→ χ2(1). (2.5)

Using the above asymptotic result, Mardia and Foster (1983) considered the normal approximation of
a χ2 variable for the skewness b1,p, Ns(b1,p),

Ns(b1,p) =
b1,p − 6 f

n
6
n

√
2 f

(2.6)

with f = p(p + 1)(p + 2)/6, and the Wilson-Hilferty transformation of a χ2 variable, Ws(b1,p)

Ws(b1,p) =

(
n
6

b1,p

f

) 1
3 −

(
1 − 2

9 f

)
√

2
9 f

. (2.7)

By the asymptotic result in (2.5), we may consider the normal approximation of the kurtosis b2,p,

Tk(b2,p) =
b2,p − p(p + 2)√

8p(p+2)
n

. (2.8)

By the way, Mardia (1970, 1974) and Mardia and Kanazawa (1983) derived the exact mean and
variance of b2,p

E(b2,p) =
n − 1
n + 1

p(p + 2),

Var(b2,p) =
(n − 3)(n − p − 1)(n − p + 1)

(n + 1)2(n + 3)(n + 5)
8p(p + 2).

Hence we will use

Nk(b2,p) =
b2,p − n−1

n+1 p(p + 2)√
(n−3)(n−p−1)(n−p+1)

(n+1)2(n+3)(n+5) 8p(p + 2)
(2.9)

instead of (2.8). Mardia and Kanazawa (1983), Mardia and Foster (1983) suggested the Wilson-
Hilferty approximation for b2,p such that

Wk(b2,p) = 3
(

f1
2

) 1
2

1 − 2
9 f1
−

 1 − 2
f1

1 + Nk(b2,p)
(

2
f1−4

) 1
2


1
3
 , (2.10)

where Nk(b2,p) is defined in (2.9) and f1 is

f1 = 6 +
√

n
(

8p(p + 2)
(p + 8)2

) 1
2
 √n(p(p + 2))

1
2

√
2(p + 8)

+

(
1 +

np(p + 2)
2(p + 8)2

) 1
2
 .
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They used the null distribution of b2,p may be approximated by the inverse of a χ2 distribution with
the above degree of freedom f1.

Enomoto et al. (2019) proposed another normal transformation for the kurtosis b2,p. The deriva-
tion of their normalizing transformation in multivariate analysis is based on Konishi (1981) and Seo
et al. (1994). That is

Ek(b2,p) =
√

n
8p(p + 2)

[
exp(d(b2,p − p(p + 2)) − 1)

d
+

2p(p + 2)(1 − 2d)
n

]
(2.11)

with d = −(p + 8)/(3p(p + 2)).
Based on the multivariate measure defined in (2.2) and (2.3) and the transformations (2.6) to

(2.11), we consider test statistics as follows.

MN = Ms(b1,p) + N2
k (b2,p),

MW = Ms(b1,p) +W2
k (b2,p),

ME = Ms(b1,p) + E2
k (b2,p),

NN = N2
s (b1,p) + N2

k (b2,p),

NW = N2
s (b1,p) +W2

k (b2,p),

NE = N2
s (b1,p) + E2

k (b2,p),

WN = W2
s (b1,p) + N2

k (b2,p),

WW = W2
s (b1,p) +W2

k (b2,p),

WE = W2
s (b1,p) + E2

k (b2,p).

The letters of the statistics come from the name of each transformation to the multivariate skewness
and kurtosis b1,p, b2,p in (2.2), (2.3). N2

s (b1,p), W2
s (b1,p), N2

k (b2,p), W2
k (b2,p), and E2

k (b2,p) follow χ2(1)
asymptotically; therefore, MN, MW, ME have the asymptotic distribution χ2(p(p + 1)(p + 2)/6 + 1)
by (2.4), and all the other statistics follow χ2(2) asymptotically. Because of the covariance between
these two statistics, b1,p, b2,p, a large sample is required for the statistics to follow the asymptotic
distributions.

Doornik and Hansen (2008) considered an omnibus test

Mp =
nb1,p

6
+

n(b2,p − p(p + 2))2

8p(p + 2)
(2.12)

to test the multivariate normality. The statistic has almost the same form as the statistic MN.
The Henze and Zirkler (1990) statistic is often recommended as a formal test statistic for multi-

variate normality. It is

Tn,β(X1, . . . ,Xn) = n(4I(S is singular) + Dn,βI(S is nonsingular)), (2.13)

where

Dn,β =
1
n2

n∑
i, j=1

exp
(
−β

2

2
||Yi − Y j||2

)
− 2

(
1 + β2

)− p
2 1

n

n∑
j=1

exp
(
− β2

2
(
1 + β2) ||Y j||2

)
+

(
1 + 2β2

)− p
2
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Table 1: statistics and p-values for the contrasts of Rao’s bark deposit data

MN MW ME NN NW NE WN WW WE
statistics 5.57 5.5 5.5 1.09 1.03 1.02 1.21 1.15 1.14
p-values 0.90 0.9 0.9 0.58 0.60 0.60 0.55 0.56 0.57

with ||Yi − Y j||2 = (Xi − X j)′S−1(Xi − X j) and ||Y j||2 = (X j − X̄)′S−1(X j − X̄). β is defined as

β = βp(n) =
1
√

2

(
2p + 1

4

) 1
p+4

n
1

p+4 .

The Henze and Zirkler statistic in (2.13) is also included in the power comparison in Section 3.

3. Example and power comparison

3.1. Example

The data set in Rao (1948) is considered. It consists of the thickness of bark deposit on 28 cork trees
measured by the weight of cork borings from four directions; north (N), east (E), west (W), and south
(S). The concern is to investigate if the thickness of bark deposit varies in the four directions. He
selected three constraints

Y1 = N − E −W + S , Y2 = S −W, Y3 = N − S

by the reason he explained in the paper and tested E(Yi) = 0, i = 1, 2, 3 for this purpose. To test
the problem by applying some techniques like Hotelling’s T 2 test, the assumption of multivariate
normality should be valid. Pearson (1956) examined the same data set.

For the contrasts (Y1,Y2,Y3), the statistics in Section 2 and the corresponding p-values are pre-
sented in Table 1. The p-values are computed using χ2 distributions with degree of freedom 11 or
2. The results confirm that Rao’s test for contrasts is valid since the multivariate normality of the
contrasts cannot be rejected. The Henze-Zirkler statistic for the contrasts is 0.68, and the critical point
for α = 0.1 in Table 3.2 in Henze and Zirkler (1990) is 0.803; therefore the multivariate normality
still cannot be rejected. Mardia (1975), Srivastava and Hui (1987), and Kim (2016) also dealt with the
data set and have the same conclusion for the contrasts.

3.2. Power comparison

We performed a simulation to study the proposed test statistics in Section 2. They are combinations of
the transformed Mardia’s multivariate skewness and kurtosis. The statistics are suggested as omnibus
ones.

Tables 2–5 show the empirical power of the 9 test statistics and the Henze and Zirkler (HZ) statistic
in (2.13) at the significance level α = 0.05 for the combinations of dimensions p = 2, 5 and sample
sizes n = 20, 50. We used the critical values from the simulation, not from the asymptotic distributions
to correct the size of the tests. We generated N = 10,000 random samples for the null distributions
of the statistics. The samples are generated from Np(0, I) since the distributions of the statistics are
invariant on µ and Σ. The simulation results for the null distributions are not presented. When we
investigate the results, the null of NN, NE, and WE statistics are well described by the asymptotic
distribution χ2(2). As for the HZ statistic, we used the critical values given in Table 3.1 and 3.3 in
Henze and Zirkler (1990).
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Table 2: power comparison of the statistics (α = 0.05, p = 2, n = 20)

Alternative MN MW ME NN NW NE WN WW WE HZ
N(0, 1)2 0.05 0.05 0.06 0.05 0.04 0.06 0.05 0.05 0.06 0.05

Cauchy(0, 1)2 0.97 0.94 0.95 0.98 0.92 0.94 0.97 0.91 0.92 0.97
Logistic(0, 1)2 0.17 0.14 0.17 0.17 0.10 0.14 0.15 0.08 0.11 0.10

(t2)2 0.74 0.67 0.71 0.74 0.61 0.67 0.71 0.56 0.61 0.64
(t5)2 0.30 0.24 0.30 0.30 0.18 0.25 0.26 0.15 0.19 0.17

Beta(1, 1)2 0.00 0.29 0.02 0.04 0.37 0.23 0.11 0.41 0.26 0.18
Beta(2, 2)2 0.00 0.12 0.01 0.01 0.16 0.08 0.06 0.18 0.12 0.06
Beta(1, 2)2 0.04 0.11 0.06 0.04 0.13 0.09 0.04 0.12 0.06 0.28†

exp(1)2 0.69 0.67 0.76 0.70 0.60 0.71 0.61 0.50 0.61 0.86†
Lognormal(0, 0.5)2 0.50 0.47 0.56 0.50 0.41 0.51 0.43 0.34 0.42 0.58†

Gamma(0.5, 1)2 0.90 0.90 0.93 0.91 0.86 0.93 0.85 0.77 0.86 0.99†
Gamma(5, 1)2 0.21 0.20 0.26 0.21 0.15 0.22 0.17 0.12 0.14 0.24

(χ2
5)2 0.37 0.34 0.42 0.37 0.28 0.38 0.30 0.20 0.29 0.45†

(χ2
15)2 0.16 0.15 0.19 0.15 0.11 0.16 0.14 0.09 0.12 0.16

N(0, 1) ∗ t5 0.17 0.13 0.16 0.17 0.11 0.15 0.14 0.09 0.11 0.12
N(0, 1) ∗ Beta(1, 1) 0.01 0.09 0.03 0.02 0.13 0.07 0.05 0.15 0.10 0.10

N(0, 1) ∗ exp(1) 0.40 0.36 0.46 0.39 0.32 0.40 0.32 0.24 0.30 0.51†
N(0, 1) ∗ χ2

5 0.20 0.18 0.23 0.20 0.15 0.19 0.16 0.11 0.14 0.22
NMIX2(0.5, 4, 0, 0) 0.01 0.18 0.03 0.03 0.23 0.15 0.07 0.25 0.16 0.52†
NMIX2(0.5, 0, 0, 0.9) 0.18 0.14 0.19 0.18 0.09 0.15 0.16 0.06 0.11 0.14
NMIX2(0.5, 4, 0, 0.9) 0.23 0.25 0.34 0.25 0.20 0.27 0.16 0.13 0.16 0.82†
NMIX2(0.9, 4, 0, 0) 0.55 0.51 0.61 0.53 0.42 0.54 0.46 0.32 0.42 0.64†
NMIX2(0.9, 0, 0, 0.9) 0.06 0.05 0.08 0.06 0.05 0.06 0.06 0.04 0.05 0.05
NMIX2(0.9, 4, 0, 0.9) 0.54 0.51 0.63 0.56 0.44 0.57 0.45 0.32 0.43 0.62

N = 5,000 samples are generated from each of the various alternative distributions. As alterna-
tives, we included the distributions with independent marginals and mixtures of normal distributions.
F1 ∗ F2 denotes the distribution with independent marginal distributions F1 and F2. F p

1 denotes the
product of p independent copies of F1. NMIXp(κ, µ, ρ1, ρ2) stands for the normal mixture

κNp(0, R1) + (1 − κ)Np(µ1, R2),

where Ri is a matrix with diagonal elements equal to 1 and off-diagonal equal to ρi, 0 ≤ ρi < 1,
i = 1, 2.

The power results in Tables 2–5 indicate the following. The best power among 9 statistics based
on the multivariate skewness and kurtosis to 4 places of decimals for each alternative is written in
bold to draw a distinction, although they are rounded off to the nearest hundredth in the tables. When
the HZ statistic has the best power, the number is marked as a dagger (†). First, the statistics with the
normal approximation to kurtosis, MN, NN, WN show good power against alternatives with symmet-
ric thicker tailed marginals such as Cauchy, logistic, and t-distributions. Second, the statistics with
the Wilson-Hilferty transformation to kurtosis show better power against alternatives with symmetric
shorter tailed marginals Beta(1, 1), Beta(2, 2). However the power of the statistic MW is not good
for p = 5. The statistics NE, WE with the Enomoto transformation to kurtosis also show relatively
good power against these alternatives, although the power is lower than NW, WW, respectively. NW
or WW are recommended to use just for these alternatives, and WW shows a little bit better power
than NW against these alternatives. Third, the statistics MN, MW, and ME show relatively good
power against alternatives with skewed marginals especially for p = 5. The statistic ME shows the
best power for p = 2, but they show almost the same power for p = 5. Those statistics MN, MW,
and ME have good power against the normal mixture alternatives. Fourth, the statistic HZ shows the
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Table 3: power comparison of the statistics (α = 0.05, p = 2, n = 50)

Alternative MN MW ME NN NW NE WN WW WE HZ
N(0, 1)2 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.05

Cauchy(0, 1)2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
Logistic(0, 1)2 0.32 0.27 0.28 0.33 0.23 0.26 0.32 0.21 0.22 0.15

(t2)2 0.97 0.95 0.93 0.97 0.94 0.94 0.97 0.95 0.94 0.95
(t5)2 0.56 0.50 0.50 0.56 0.46 0.48 0.56 0.44 0.44 0.32

Beta(1, 1)2 0.00 0.76 0.48 0.30 0.86 0.81 0.42 0.90 0.82 0.68
Beta(2, 2)2 0.00 0.23 0.07 0.03 0.36 0.31 0.13 0.44 0.34 0.17
Beta(1, 2)2 0.12 0.30 0.28 0.13 0.26 0.29 0.05 0.21 0.16 0.80†

exp(1)2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
Lognormal(0, 0.5)2 0.95 0.95 0.96 0.94 0.94 0.95 0.92 0.88 0.91 0.94

Gamma(0.5, 1)2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
Gamma(5, 1)2 0.56 0.58 0.63 0.57 0.56 0.61 0.47 0.46 0.48 0.53

(χ2
5)2 0.86 0.86 0.90 0.87 0.84 0.88 0.78 0.76 0.79 0.87

(χ2
15)2 0.41 0.42 0.46 0.42 0.39 0.45 0.33 0.31 0.32 0.36

N(0, 1) ∗ t5 0.32 0.28 0.29 0.32 0.25 0.28 0.30 0.24 0.25 0.17
N(0, 1) ∗ Beta(1, 1) 0.01 0.12 0.05 0.02 0.20 0.17 0.07 0.25 0.20 0.32†

N(0, 1) ∗ exp(1) 0.88 0.87 0.91 0.88 0.86 0.90 0.81 0.79 0.80 0.92†
N(0, 1) ∗ χ2

5 0.54 0.53 0.58 0.56 0.51 0.56 0.43 0.41 0.45 0.52
NMIX2(0.5, 4, 0, 0) 0.01 0.31 0.15 0.07 0.42 0.36 0.15 0.46 0.37 1.00†
NMIX2(0.5, 0, 0, 0.9) 0.28 0.25 0.25 0.29 0.20 0.21 0.28 0.18 0.19 0.32†
NMIX2(0.5, 4, 0, 0.9) 0.90 0.91 0.94 0.90 0.88 0.93 0.71 0.69 0.79 1.00†
NMIX2(0.9, 4, 0, 0) 0.97 0.98 0.99 0.98 0.97 0.98 0.94 0.93 0.95 0.95
NMIX2(0.9, 0, 0, 0.9) 0.08 0.06 0.10 0.09 0.04 0.09 0.08 0.03 0.06 0.05
NMIX2(0.9, 4, 0, 0.9) 0.98 0.98 0.99 0.99 0.98 0.98 0.97 0.96 0.98 0.94

Table 4: power comparison of the statistics (α = 0.05, p = 5, n = 20)

Alternative MN MW ME NN NW NE WN WW WE HZ
N(0, 1)5 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04

Cauchy(0, 1)5 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99
Logistic(0, 1)5 0.18 0.18 0.18 0.12 0.06 0.07 0.10 0.05 0.05 0.08

(t2)5 0.88 0.87 0.87 0.84 0.75 0.78 0.83 0.71 0.71 0.69
(t5)5 0.34 0.33 0.32 0.26 0.15 0.16 0.22 0.12 0.12 0.14

Beta(1, 1)5 0.00 0.02 0.00 0.22 0.31 0.29 0.22 0.33 0.27 0.10
Beta(2, 2)5 0.00 0.01 0.01 0.12 0.17 0.16 0.12 0.18 0.15 0.06
Beta(1, 2)5 0.03 0.03 0.03 0.05 0.09 0.08 0.06 0.10 0.07 0.18 †

exp(1)5 0.79 0.80 0.80 0.64 0.52 0.58 0.58 0.48 0.49 0.81†
Lognormal(0, 0.5)5 0.60 0.58 0.60 0.44 0.32 0.39 0.38 0.27 0.29 0.49

Gamma(0.5, 1)5 0.97 0.97 0.97 0.91 0.87 0.91 0.88 0.84 0.85 0.99†
Gamma(5, 1)5 0.21 0.20 0.20 0.13 0.08 0.09 0.10 0.06 0.06 0.17

(χ2
5)5 0.39 0.40 0.40 0.25 0.16 0.20 0.21 0.13 0.13 0.34

(χ2
15)5 0.15 0.14 0.15 0.09 0.05 0.06 0.08 0.05 0.04 0.12

N(0, 1)4 ∗ t5 0.10 0.09 0.10 0.07 0.05 0.06 0.07 0.04 0.05 0.06
N(0, 1)4 ∗ Beta(1, 1) 0.03 0.03 0.03 0.06 0.07 0.07 0.06 0.07 0.07 0.06

N(0, 1)4 ∗ exp(1) 0.18 0.19 0.19 0.12 0.07 0.08 0.09 0.06 0.05 0.13
N(0, 1)4 ∗ χ2

5 0.11 0.10 0.10 0.07 0.04 0.05 0.06 0.05 0.04 0.08
NMIX5(0.5, 4, 0, 0) 0.03 0.03 0.03 0.07 0.09 0.09 0.06 0.10 0.08 0.17†
NMIX5(0.5, 0, 0, 0.9) 0.65 0.61 0.63 0.59 0.37 0.41 0.52 0.30 0.30 0.54
NMIX5(0.5, 4, 0, 0.9) 0.82 0.82 0.83 0.73 0.59 0.65 0.69 0.54 0.54 0.96†
NMIX5(0.9, 4, 0, 0) 0.40 0.40 0.43 0.30 0.20 0.24 0.26 0.15 0.16 0.32
NMIX5(0.9, 0, 0, 0.9) 0.10 0.10 0.10 0.08 0.04 0.05 0.06 0.04 0.04 0.07
NMIX5(0.9, 4, 0, 0.9) 0.43 0.42 0.45 0.26 0.20 0.22 0.23 0.16 0.17 0.40
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Table 5: power comparison of the statistics (α = 0.05, p = 5, n = 50)

Alternative MN MW ME NN NW NE WN WW WE HZ
N(0, 1)5 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.06 0.04

Cauchy(0, 1)5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
Logistic(0, 1)5 0.41 0.37 0.37 0.37 0.28 0.32 0.32 0.26 0.26 0.14

(t2)5 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(t5)5 0.68 0.67 0.70 0.72 0.65 0.67 0.69 0.61 0.62 0.30

Beta(1, 1)5 0.00 0.08 0.00 0.68 0.86 0.83 0.66 0.85 0.82 0.50
Beta(2, 2)5 0.00 0.00 0.00 0.27 0.44 0.42 0.27 0.44 0.40 0.14
Beta(1, 2)5 0.05 0.06 0.07 0.04 0.14 0.11 0.03 0.11 0.08 0.66†

exp(1)5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
Lognormal(0, 0.5)5 0.99 0.99 0.99 0.99 0.98 0.99 0.96 0.97 0.97 0.96

Gamma(0.5, 1)5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
Gamma(5, 1)5 0.67 0.69 0.70 0.56 0.54 0.55 0.48 0.48 0.51 0.47

(χ2
5)5 0.95 0.95 0.95 0.90 0.89 0.92 0.85 0.84 0.87 0.88

(χ2
15)5 0.49 0.50 0.50 0.35 0.36 0.36 0.31 0.27 0.30 0.28

N(0, 1)4 ∗ t5 0.20 0.19 0.18 0.16 0.13 0.15 0.14 0.13 0.12 0.09
N(0, 1)4 ∗ Beta(1, 1) 0.02 0.03 0.02 0.04 0.08 0.07 0.06 0.09 0.08 0.10†

N(0, 1)4 ∗ exp(1) 0.55 0.59 0.57 0.44 0.43 0.44 0.38 0.36 0.41 0.39
N(0, 1)4 ∗ χ2

5 0.25 0.29 0.27 0.20 0.19 0.20 0.18 0.14 0.16 0.16
NMIX5(0.5, 4, 0, 0) 0.03 0.02 0.03 0.06 0.12 0.11 0.07 0.14 0.14 0.70†
NMIX5(0.5, 0, 0, 0.9) 0.90 0.88 0.84 0.93 0.87 0.86 0.94 0.84 0.83 0.98†
NMIX5(0.5, 4, 0, 0.9) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00†
NMIX5(0.9, 4, 0, 0) 0.88 0.89 0.88 0.79 0.79 0.81 0.74 0.74 0.76 0.92†
NMIX5(0.9, 0, 0, 0.9) 0.17 0.15 0.13 0.13 0.09 0.12 0.13 0.09 0.09 0.11
NMIX5(0.9, 4, 0, 0.9) 0.99 0.99 0.99 0.96 0.95 0.96 0.89 0.88 0.91 0.91

best power against some alternatives with skewed marginals and some normal mixtures. However the
power against symmetric shorter tailed marginals is not good. Apparently the statistics MN, MW,
ME and HZ show very similar phenomena in power. For the alternatives N(0, 1)p−1 ∗ F2, when F2
has a symmetric thicker tailed, a symmetric shorter tailed, or a skewed distribution, we can see almost
the same things as above.

Let us compare the normal approximation and the Enomoto transformation to the kurtosis. When
we compare the statistics NN and NE with the normal approximation to the skewness, or WN and WE
with Wilson-Hilferty to the skewness, NN, WN show better power than NE, WE against alternatives
with symmetric thicker tailed marginals. Conversely, NE, WE have much better power against alter-
natives with symmetric shorter tailed marginals. They show similar power against skewed marginal
alternatives. The statistics MN and ME have comparable power. ME shows better power for p = 2
and they have almost the same power for p = 5. However MN and ME show terribly low power
against alternatives with symmetric shorter tailed marginals.

As an omnibus test statistic, we recommend the statistic NE or WE. The other statistics could
show better power than these statistics in some special alternatives; however, NE or WE has relatively
good power against almost all alternatives considered, and the null distribution is well described by
the χ2-distribution. Comparing the two statistics, the power of NE is better than WE. The Enomoto’s
transformation to the kurtosis may be replace by the normal approximation to the kurtosis.

4. Conclusions

In this paper, we considered omnibus tests for multivariate normality based on the Mardia’s multi-
variate skewness and kurtosis. The idea is to use the normalizing transformations for the multivariate
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skewness and kurtosis. We used the normal approximation using mean and variance, the Wilson-
Hilferty transformation of a χ2-variable, and the transformation proposed by Enomoto et al. (2019)
for the Mardia’s kurtosis.

We investigated the power of the tests under several alternatives. The sum of the statistics of
the Mardia’s skewness and the transformations of the Mardia’s kurtosis have good power against al-
ternatives with skewed marginals. The normal approximation to the Mardia’s kurtosis shows good
power against alternatives with symmetric thicker tailed marginals and the Wilson-Hilferty transfor-
mation to the Mardia’s kurtosis shows good power against alternatives with symmetric shorter tailed
marginals. No tests have best power in all kinds of alternatives; however, the statistic NE should be
recommended as an omnibus statistic because of the relatively good power in many of the alternatives
considered. It has the normal approximation to the Mardia’s skewness and the Enomoto’s normalizing
transformation to the Mardia’s kurtosis.
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