• Title/Summary/Keyword: Multivariate Normal Distribution

Search Result 104, Processing Time 0.024 seconds

A Study on Multiple Characteristics Process Capability Index using Expected Loss Function (기대손실함수를 이용한 다특성치 공정능력지수에 관한 연구)

  • Kim Su Yeol;Jo Yong Uk;Park Myeong Gyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.69-79
    • /
    • 2004
  • Process capability indices are widely used in industries and quality assurance system. When designing the parameter on the multiple quality characteristics, there has been a study for optimization of problems, but there has been few former study on the possible conflicting phenomena in considertion of the correlations among the characteristics. To solve the issue on the optimal design for multiple quality characteristics, the study propose the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of terms. Therefore, the analysis have to be required a multivariate statistical technique. This paper introduces to multivariate capability indices and then selects a multivariate process capability index incorporated both the process variation and the process deviation from target among these indices under the multivariate normal distribution. We propose a new multivariate capability index $MC_{pm}^{++}$ using quality loss function instead of the process variation and this index is compared with the proposed indices when quality characteristics are independent and dependent of each other.

  • PDF

Multivariate EWMA control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.807-814
    • /
    • 2012
  • We know that the exponentially weighted moving average (EWMA) control charts are sensitive to detecting relatively small shifts. Multivariate EWMA control charts are considered for monitoring of variance-covariance matrix when the distribution of process variables is multivariate normal. The performances of the proposed EWMA control charts are evaluated in term of average run length (ARL). The performance is investigated in three types of shifts in the variance-covariance matrix, that is, the variances, covariances, and variances and covariances are changed respectively. Numerical results show that all multivariate EWMA control charts considered in this paper are effective in detecting several kinds of shifts in the variance-covariance matrix.

Multivariate Shewhart control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.617-626
    • /
    • 2012
  • Multivariate Shewhart control charts are considered for the simultaneous monitoring the variance-covariance matrix when the joint distribution of process variables is multivariate normal. The performances of the multivariate Shewhart control charts based on control statistic proposed by Hotelling (1947) are evaluated in term of average run length (ARL) for 2 or 4 correlated variables, 2 or 4 samples at each sampling point. The performance is investigated in three cases, that is, the variances, covariances, and variances and covariances are changed respectively.

Statistical Methods for Multivariate Missing Data in Health Survey Research (보건조사연구에서 다변량결측치가 내포된 자료를 효율적으로 분석하기 위한 통계학적 방법)

  • Kim, Dong-Kee;Park, Eun-Cheol;Sohn, Myong-Sei;Kim, Han-Joong;Park, Hyung-Uk;Ahn, Chae-Hyung;Lim, Jong-Gun;Song, Ki-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.4 s.63
    • /
    • pp.875-884
    • /
    • 1998
  • Missing observations are common in medical research and health survey research. Several statistical methods to handle the missing data problem have been proposed. The EM algorithm (Expectation-Maximization algorithm) is one of the ways of efficiently handling the missing data problem based on sufficient statistics. In this paper, we developed statistical models and methods for survey data with multivariate missing observations. Especially, we adopted the EM algorithm to handle the multivariate missing observations. We assume that the multivariate observations follow a multivariate normal distribution, where the mean vector and the covariance matrix are primarily of interest. We applied the proposed statistical method to analyze data from a health survey. The data set we used came from a physician survey on Resource-Based Relative Value Scale(RBRVS). In addition to the EM algorithm, we applied the complete case analysis, which uses only completely observed cases, and the available case analysis, which utilizes all available information. The residual and normal probability plots were evaluated to access the assumption of normality. We found that the residual sum of squares from the EM algorithm was smaller than those of the complete-case and the available-case analyses.

  • PDF

An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense (비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석)

  • Choi, Phil-Sun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.345-358
    • /
    • 2012
  • In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.

VaR Estimation of Multivariate Distribution Using Copula Functions (Copula 함수를 이용한 이변량분포의 VaR 추정)

  • Hong, Chong-Sun;Lee, Jae-Hyung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.523-533
    • /
    • 2011
  • Most nancial preference methods for market risk management are to estimate VaR. In many real cases, it happens to obtain the VaRs of the univariate as well as multivariate distributions based on multivariate data. Copula functions are used to explore the dependence of non-normal random variables and generate the corresponding multivariate distribution functions in this work. We estimate Archimedian Copula functions including Clayton Copula, Gumbel Copula, Frank Copula that are tted to the multivariate earning rate distribution, and then obtain their VaRs. With these Copula functions, we estimate the VaRs of both a certain integrated industry and individual industries. The parameters of three kinds of Copula functions are estimated for an illustrated stock data of two Korean industries to obtain the VaR of the bivariate distribution and those of the corresponding univariate distributions. These VaRs are compared with those obtained from other methods to discuss the accuracy of the estimations.

CTE with weighted portfolios (가중 포트폴리오에서의 CTE)

  • Hong, Chong Sun;Shin, Dong Sik;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.119-130
    • /
    • 2017
  • In many literatures on VaR and CTE for multivariate distribution, these are estimated by using transformed univariate distribution with a specific ratio of many kinds of portfolios. Even though there are lots of works to define quantiles for multivariate distributions, there does not exist a quantile uniquely. Hence, it is not easy to define the VaR and CTE. In this paper, we propose the weighted CTE vectors corresponding to various ratio combinations of many kinds of portfolios by extending the researches on the alternative VaR and integrated multivariate CTE based on multivariate quantiles. We extend relation equations about univariate CTEs to multivariate CTE vectors and discuss their characteristics. The proposed weighted CTEs are explored with some data from multivariate normal distribution and illustrative examples.

Value at Risk of portfolios using copulas

  • Byun, Kiwoong;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.59-79
    • /
    • 2021
  • Value at Risk (VaR) is one of the most common risk management tools in finance. Since a portfolio of several assets, rather than one asset portfolio, is advantageous in the risk diversification for investment, VaR for a portfolio of two or more assets is often used. In such cases, multivariate distributions of asset returns are considered to calculate VaR of the corresponding portfolio. Copulas are one way of generating a multivariate distribution by identifying the dependence structure of asset returns while allowing many different marginal distributions. However, they are used mainly for bivariate distributions and are not widely used in modeling joint distributions for many variables in finance. In this study, we would like to examine the performance of various copulas for high dimensional data and several different dependence structures. This paper compares copulas such as elliptical, vine, and hierarchical copulas in computing the VaR of portfolios to find appropriate copula functions in various dependence structures among asset return distributions. In the simulation studies under various dependence structures and real data analysis, the hierarchical Clayton copula shows the best performance in the VaR calculation using four assets. For marginal distributions of single asset returns, normal inverse Gaussian distribution was used to model asset return distributions, which are generally high-peaked and heavy-tailed.

Bayesian Hypothesis Testing in Multivariate Growth Curve Model.

  • Kim, Hea-Jung;Lee, Seung-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.81-94
    • /
    • 1996
  • This paper suggests a new criterion for testing the general linear hypothesis about coefficients in multivariate growth curve model. It is developed from a Bayesian point of view using the highest posterior density region methodology. Likelihood ratio test criterion(LRTC) by Khatri(1966) results as an approximate special case. It is shown that under the simple case of vague prior distribution for the multivariate normal parameters a LRTC-like criterion results; but the degrees of freedom are lower, so the suggested test criterion yields more conservative test than is warranted by the classical LRTC, a result analogous to that of Berger and Sellke(1987). Moreover, more general(non-vague) prior distributions will generate a richer class of tests than were previously available.

  • PDF

Estimators with Nondecreasing Risk in a Multivariate Normal Distribution

  • Kim, Byung-Hwee;Koh, Tae-Wook;Baek, Hoh-Yoo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.257-266
    • /
    • 1995
  • Consider a p-variate $(p \geq 4)$ normal distribution with mean $\b{\theta}$ and identity covariance matrix. For estimating $\b{\theta}$ under a quadratic loss we investigate the behavior of risks of Stein-type estimators which shrink the usual estimator toward the mean of observations. By using concavity of the function appearing in the shrinkage factor together with new expectation identities for noncentral chi-squared random variables, a characterization of estimators with nondecreasing risk is obtained.

  • PDF