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Estimators with Nondecreasing Risk in
a Multivariate Normal Distribution

Byung Hwee Kim! , Tae Wook Koh? and Hoh Yoo Baek?®

ABSTRACT

Consider a p-variate (p > 4) normal distribution with mean § and
identity covariance matrix. For estimating @ under a quadratic loss we
investigate the behavior of risks of Stein-type estimators which shrink
the usual estimator toward the mean of observations. By using con-
cavity of the function appearing in the shrinkage factor together with
new expectation identities for noncentral chi-squared random variables,
a characterization of estimators with nondecreasing risk is obtained.

KEYWORDS: p-variate normal distribution, Quadratic loss, Stein-
type estimator,. Noncentral chi-squared distribution, Concavity.

1. INTRODUCTION

Let X have a p-variate (p > 3) normal distribution with mean @ and
identity covariance matrix . It is desired to estimate using an estimator
d(X) under a quadratic loss L(8,d) =| §—d(X) |* where | - | denotes Euclidean
distance. The risk of d(X), R(8,d) , is given by R(8,d) = E,|0 — d(X)|>.
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Blyth(1951) for p = 1 and Stein(1956) for p = 2 proved that the usual es-
timator (maximum liklihood, uniformly minimum variance, or best invariant)
X 1s admissible. However, X ceases to be an admissible estimator for p > 3.
This was first proved by Stein(1956). An explicit estimator dominating X
was produced by James and Stein(1961), which shrinks X toward the origin.
Subsequently a number of authors provided classes of Stein-type estimators
dominating X (see, for examples Efron and Morris (1976), Ghosh, Hwang,
and Tsui(1984) where other references are cited ). One common feature of the
above classes of estimators dominating X is that they are all spherically sym-
metric shrinking X toward some particular point, not necessarily the origin.

Casella(1990) considered Stein-type estimators of the form d(X) = (1 —

Iﬁ%@)ﬁ_, p > 3, and gave sufficient conditions on r(] X |°) for the risk of the

estimator to be nondecreasing in | 8 |°. In particular, this result generalizes a
result of Efron and Morris(1973), who showed that the risk of ordinary James-
Stein estimator with r(| X |*) = p — 2 is nondecreasing in | 8 |*.

Consider Stein-type estimators of the form

d(X) = X1+ (X - X1)(1 —r(5%)/S?), p>4, (1.1)

where S? =| X — X1 |? and 1 is the column vector of ones. The estima-
tor in (1.1) shrinks X toward X1. Lindley (1962) proposed an estimator
with r(¢) = p — 3 in the discussion of Stein’s(1962) paper. In a very in-
teresting article Lindley and Smith(1972) presented a class of biased linear
estimators with r(t) = 2t motivated from a Bayesian view-point. Efron
and Morris(1973) suggested that Lindley’s estimator is good compared to
the ordinary James-Stein estimator in the sense of the relative savings loss.
Leonard (1976) proposed generalized Bayes estimators with r(t) = (p — 3) —
2[exp(—1%)]/{ /g AP=3/A=1[exp(—At/2)]d)} in a hierarchical Bayesian set-up.
He demonstrated that Lindley’s estimator shrinks more rapidly toward X1
than does his estimator. Also, Berger(1980) provided generalized Bayes es-
timators with r(t) = 2n — 2[exp(—%)}/{fy A" "'[exp(—At/2)]dA},n > 0, in a
hierarchical Bayesian model which contains Leonard’s estimator as a special
case with n = 232,

In this paper we investigate the risk behavior of the estimator in (1.1).
In Section 2 we give several chi-squared identities which are crucial in our
analysis. In Section 3 we provide sufficient conditions on r(t) for the risk of
the estimator in (1.1) to be nondecreasing in |§ — 1|2
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2. CHI-SQUARED IDENTITIES

This section deals with some chi-squared identities which may seem new.
In the following Xz;az denotes a noncentral chi-squared random variable with

k degrees of freedom and noncentrality parameter 62 =| § — 01 |? . The value
of § is indicated by the subscript on the expectation operator.

Lemma 2.1. Let A : [0,00] — (—00,00). Then, provided the expecta-
tions exist,

Eg{8/(X — X1)h(5*)/5%} = 8 Eg{h(x}s1,02) [ X415} (2.1)

62Eﬁ{h(X3+1;62)/X2+1;62}
= Ei{h(Xz—s;ﬁ)} —(p— 3)Eg{h(Xz-1;52)/Xf,_l;ﬁ}, (2.2)

17, 1
wEﬁ{h(Xz—l;SQ)} = §{Eﬂh(X;2)+1;62) E0 p 1; 62)} (2-3)

Proof. See Appendix.
Using Lemma 2.1 we have the following result:

Lemma 2.2. Let h : [0,00) — (—o0, o) be differentiable. Then, provided
both sides exist,

J d
962 Ea{h(kp-—l 52 } - Ee{a 2 h(X;27+1;62)}' (24)
P+l

Proof. Thelemma is established by equating the result of the well-known
integraton by parts technique with the result of Lemma 2.1. We will proceed
by evaluating the risk of the estimator d(X) = X1+ (X - X1)(1— Msi:-l) where
X ~ N,(8,1,). First,

2 2
Byl 0~ d(X) [ = Bl 0 - £1- (X - X1 - 45
=P+2Eg{(0 X)( —‘Yl) (52)}+E9{ (52)} (2.5)

Now, consider the first expectation in the right-hand side of (2.5). By
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the usual integration by parts

Eof(0 - Xy(X - X"
= 3 o= DO ) Ky e b g
- -¥ [1—1 L R AL
L R R ™
= —(p- 3)E9{h(52)} 2E{R'(S5%)}, (2.6)

where h'(5?%) = 0h(S?%)/0S?. Hence, from (2.5) and (2.6), we have

Byl - d(X) [ = p— 4Ealb(5) + (2 0(sY) 20 - 3} (27)

Next, applying (2.1) and (2.2) of Lemma 2.1 to the first expectation in the
right-hand side of (2.5) and rearranging terms yield

Es| 8 —d(X) |
= p+2E{8/(X - X1)

= pr2me- XM -

2(52)

2E5{h(S*)} + Eg{ }

— 52E h 2 2 2F h E h"’(S"’)
- p+2 .Q{ (Xp+1;62)/Xp+1'52} 9{ (Xp—162)}+ 9( )

S0} - 2B {h(x2 162)} Lt

}

- p—z{Egh(xf,_l;sz)—Egh(x,,_a;sz)}+Ee{( Din(s?) -2 -3)). (28)

= p+2{Eglh(xX}_35) — (P — 3)Eo[

Now, equating (2.7) and (2.8), cancelling common terms, and using (2.3)
yield

d

a&on{h(Xp 352)} = _{E0 (Xp—l 87) - E9 (Xp—352)}

= E_{h'(52)}



Estimatiors With Nondecreasing Risk 261

-5 {e))

L3 2
axp—l;és2

3. ESTIMATORS WITH NONDECREASING RISK.

Before providing a main result we need a result due to Casella(1990) which
relates the property of concavity of 7(t) to usual conditions on r(¢) about the
risk behavior of the estimator in (1.1), namely, r(¢) is nondecreasing and r(t)/¢
is nonincreasing. ’

Lemma 3.1. Let r(-) : [0,00) — [0,00) be concave. Then
(1) r(¢) is nondecreasing in t;
(ii) r(t)/t is nonincreasing in t.

Proof. See Casella(1990).

Remark 3.1. Note that the converse of Lemma 3.1 is false. An example
is given by

2yet , 0<t<:
r(t) = et , 3<t<l
Int+e , 1<t

which satisfies (i) and (ii) of Lemma 3.1, but is not concave.

Now, we give a main result which characterizes a class of minimax estima-
s . . 31 12
tors whose minimum risk is attained at §%2 = |8—-01|"=0.

Theorem 3.1. Let d(X) be as in (1.1) where r(:) : [0,00) — [0,00) is
concave. If 0 < r(t) < 2(p—3), p > 4, then R(,d) is a nondecreasing risk
function of 62 = | § — 61 |2.

Proof. Assume, for the moment, that r is twice differentiable. It follows

from (2.7) that
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where r'(5%) = 9r(S?)/0S?. The concavity of 7(t), together with Lemma 3.1,
insure that the leIlCthIl inside the second expectation in (3.1) is nondecreasing
in S2, and hence the expectation is nondecreasing in 6> = | § — 01 ]2. Thus,
we only need show that E,[r'(S?)] is nonincreasing in 62 = | § — 61 1. Using
Lemma 2.2 yields

0 d

_8—(—5—2—EQ[TI(52)] = ﬁEo[ (\p—l 2)] = EQ[TH(XZH:W <0

by the fact that r is concave, where T,’(X?H_l;&z) = 87"(x'f)+1;52)/8xf,+1;52. If r
is not twice-differentiable, we can take a sequence {r,} of twice-differentiable
concave functions which uniformly converges to . Then, forn =1,2,...,

d d

bﬁEﬁ[r,n(Srz)] 555E9{ n(/\’i—l;ﬁ )] = EQ[THH(Xiﬂ:b‘?)] < 0.

and hence

3}
Jim o 962 Eg[r'a(8%)] <0.

Now , using Bounded Convergence Theorem yield

WEQ[T"(SQ)] S 0.

Hence, the theorem is established.

Remark 3.2. From Lemma 3.1, it also follows that d(X) of Theorem 3.1
is minimax. This can be seen from (3.1) . Although the concavity condition
seems rather strong, all estimators introduced in Section 1 and the positive-
part Lindley-Efron- Morris-Stein estimator d(X) = X1+(1—(p—3)/5?)*

X1) satisfy the condition.
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APPENDIX
Proof of (2.1) :

With X ~ N,(8, I,) we make an orthogonal transformation ¥ = AX where

A = (a;;) is an p x p orthogonal matrix with a;; = (6; ——0~)/\ / ‘Lp: (8; — 0)%,a,; =
=1

1//pj = 1,2,---,p, and Za,] = 0, = 2,3,---,p — 1. Then Eg(Y;) =

7=1

{:(9 —6)2, By(Y:) = 0,i =2,3,--,p—1, Eg(Y,) = /pb, Vary (V) = 1, i=
9.

1, ,p, and the Y;’s are independent normal variables. Now,
p —
§*=3"(Xi—X)
=1
= X'(I, - 111 NX
P 1
(ATY)(I, - ~11)A'Y.
P
1
=Y'A(I, - -
| pAl )A
=YY -Y(=—)Y
P
—YY- Z
Hence, with g(5%) = h(5?)/5% and g(x2,,.52) = h(X241.62) /X2 115520

Ep{0'(X — X1)g(S*)}

= Ep{(0 - 01Y X)g(5?)}

p—1
= 6Ep{Y1g(Y + 3 Y2}
=2
o0 P—l v —1'2/2 E22)
_ —52/2 2 2, %€ €
6E{e™ [ g(a + V= del)

-82/2

=SB = ([ oty + L ¥ )

1=2

dy
el
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—5 /2 p-1 2k+1

= saal =l g(y+§Yf) 3 25 o
\ (62)k —2"’— 1o-y/2

_5E,,{/ y+22Y kE (s %ﬂ ) dy}

((2k+1)!=T(2k+2) = I‘(k+1)I‘(k+ 2““/\/')

p-1
=6 Eg{g(x3s + DY)}

=2
=8 Eg{g(x3s + X2-2)}
=6 Eg{g9(x211.2)}-

Proof of (2.2) :

Eg{h(Xg-s;ﬂ )}

_ie‘””(%)"/“‘ vE e e
= R T e I
i": e /13(£) /00 h(v) i it g d
= — dv
i K 0 v L p(Zkipslyyf
o ,—82/208%\k o | 2k+p—-1 4 _ v
=y T kg gy (AU
k=0 k! o v F(3—+Fl)2 3

=(p-— 3)E0{h(Xp 1;52 /Xp—l 52}

o] —52/2 62 'U) vﬁitl. 16___;_
+ -2 / — dv
kzl (k —1 Zotpolyo BEAP=

= (p — 3)Eg{h( xp-l;sz)/xp_l;az}

82 & e L)k < h(v) v FT-le3
k! '2'/0

=(p—- 3)Eﬁ{h(xg-1;s2)/xz—1;52}

+62Ei{h(X;2>+1;62 )/X12;+1;67 }

- dv

2k+p+
k=0 v [(#tetly)
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Proof of (2.3) :

a
ﬁEﬁ_{h(X?)—l;W)}

2ktp=1_4 _w
v 2 € 2

= 6—62/2(%)k 0o
P [

—— d
96* (5 k! I‘(——l';—z"””2 =1y itp=t v

1 , o =8 /2(8)k oo Bapt-1,-4
_ _ = , _ _2
- QEQ{IL(Xp—l;W)} + 9 }g) k! L h(v) F( 2k+22+1 )2&1:2;2}'_1.

1 1
= _aEﬁ{h(X?)—l;Sz)} + §E2{h(X,2;+1,62)}

1
= §{Eih(X,2;+1;&2) - Eﬁh(xz—l;ﬁ)}'
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