• 제목/요약/키워드: Multiplicative group of integers modulo n

검색결과 4건 처리시간 0.021초

SEMI-PRIMITIVE ROOT MODULO n

  • Lee, Ki-Suk;Kwon, Mi-Yeon;Kang, Min-Kyung;Shin, Gi-Cheol
    • 호남수학학술지
    • /
    • 제33권2호
    • /
    • pp.181-186
    • /
    • 2011
  • Consider a multiplicative group of integers modulo n, denoted by $\mathbb{Z}_n^*$. Any element $a{\in}\mathbb{Z}_n^*$ n is said to be a semi-primitive root if the order of a modulo n is $\phi$(n)/2, where $\phi$(n) is the Euler phi-function. In this paper, we classify the multiplicative groups of integers having semi-primitive roots and give interesting properties of such groups.

MULTIPLICATIVE GROUPS OF INTEGERS WITH SEMI-PRIMITIVE ROOTS MODULO n

  • Lee, Ki-Suk;Kwon, Miyeon;Shin, GiCheol
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.71-77
    • /
    • 2013
  • Consider a multiplicative group of integers modulo $n$, denoted by $\mathbb{Z}_n^*$. Any element $a{\in}\mathbb{Z}_n^*$ is said to be a semi-primitive root if the order of $a$ modulo $n$ is ${\phi}(n)/2$, where ${\phi}(n)$ is the Euler phi-function. In this paper, we discuss some interesting properties of the multiplicative groups of integers possessing semi-primitive roots and give its applications to solving certain congruences.

GALOIS POLYNOMIALS FROM QUOTIENT GROUPS

  • Lee, Ki-Suk;Lee, Ji-eun;Brandli, Gerold;Beyne, Tim
    • 충청수학회지
    • /
    • 제31권3호
    • /
    • pp.309-319
    • /
    • 2018
  • Galois polynomials are defined as a generalization of the cyclotomic polynomials. The definition of Galois polynomials (and cyclotomic polynomials) is based on the multiplicative group of integers modulo n, i.e. ${\mathbb{Z}}_n^*$. In this paper, we define Galois polynomials which are based on the quotient group ${\mathbb{Z}}_n^*/H$.

MODIFIED CYCLOTOMIC POLYNOMIALS

  • Ae-Kyoung, Cha;Miyeon, Kwon;Ki-Suk, Lee;Seong-Mo, Yang
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1511-1522
    • /
    • 2022
  • Let H be a subgroup of $\mathbb{Z}^*_n$ (the multiplicative group of integers modulo n) and h1, h2, …, hl distinct representatives of the cosets of H in $\mathbb{Z}^*_n$. We now define a polynomial Jn,H(x) to be $$J_{n,H}(x)=\prod^l_{j=1} \left( x-\sum_{h{\in}H} {\zeta}^{h_jh}_n\right)$$, where ${\zeta}_n=e^{\frac{2{\pi}i}{n}}$ is the nth primitive root of unity. Polynomials of such form generalize the nth cyclotomic polynomial $\Phi_n(x)={\prod}_{k{\in}\mathbb{Z}^*_n}(x-{\zeta}^k_n)$ as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is irreducible over ℚ, Jn,H(x) is not necessarily irreducible. In this paper, we determine the subgroups H for which Jn,H(x) is irreducible over ℚ.