GALOIS POLYNOMIALS FROM QUOTIENT GROUPS

Ki-Suk Lee*, Ji-eun Lee**, Gerold Brändli***, and Tim Beyne****

Abstract

Galois polynomials are defined as a generalization of the cyclotomic polynomials. The definition of Galois polynomials (and cyclotomic polynomials) is based on the multiplicative group of integers modulo n , i.e. \mathbb{Z}_{n}^{*}. In this paper, we define Galois polynomials which are based on the quotient group \mathbb{Z}_{n}^{*} / H.

1. Introduction

Galois polynomials based on quotient groups have been studied before [6], especially the question of their irreducibility or reducibility. Here we place them in a broader context.

Let n be a nonnegative integer and w be the n-th primitive root of unity, that is $w=e^{\frac{2 \pi i}{n}}$. The cyclotomic polynomial $\Phi_{n}(x)$ is a monic polynomial with integer coefficients satisfying that $\Phi_{n}(w)=0$ and is irreducible over the field of the rational numbers. It is well known that

$$
\Phi_{n}(x)=\prod_{k \in \mathbb{Z}_{n}^{*}}\left(x-w^{k}\right)
$$

where \mathbb{Z}_{n}^{*} is the multiplicative group of integers modulo n. These denotations are used throughout this paper.

Definition 1.1. Let H be a subgroup of \mathbb{Z}_{n}^{*} and $\mathbb{Z}_{n}^{*} / H=\left\{r_{1} H, r_{2} H\right.$, $\left.\cdots, r_{l} H\right\}$ be its corresponding quotient group. Since it is itself a group, one r_{i} must be 1 , one could say $r_{1}=1$ without loosing generality. For each $k=1, \cdots, l$, define $a_{k}=\sum_{h \in H} w^{r_{k} h}$. We define the Galois polynomials,

$$
\Phi_{n, H}(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{l}\right) .
$$

Received January 30, 2018; Accepted July 23, 2018.
2010 Mathematics Subject Classification: Primary 12D05, 12E05, 12F05, 12F10.
Key words and phrases: n-th cyclotomic polynomial, Galois irreducible polynomial, semi-cyclotomic polynomial.
*Correspondence should be addressed to Ki-Suk Lee, ksleeknue@gmail.com.

It is known that $\Phi_{n, H}(x)$ is a monic polynomial with integer coefficients.
Let N be a subgroup of \mathbb{Z}_{n}^{*} and H be a subgroup of \mathbb{Z}_{n}^{*} / N. We define the Galois polynomial from a quotient group $\Psi_{n, H}(x)$ as follows. Let's denote $N=\left\{n_{1}, n_{2}, \cdots, n_{r}\right\}, \mathbb{Z}_{n}^{*} / N=\left\{r_{1} N, r_{2} N, \cdots, r_{t} N\right\}, H=$ $\left\{h_{1}, h_{2}, \cdots, h_{m}\right\}$ and $\left(\mathbb{Z}_{n}^{*} / N\right) / H=\left\{k_{1} H \times N, k_{2} H \times N, \cdots, k_{s} H \times N\right\}$. Then

$$
k_{v} H \times N=k_{v}\left\{h_{1}, h_{2}, \cdots, h_{m}\right\}\left\{n_{1}, n_{2}, \cdots, n_{r}\right\} .
$$

Definition 1.2. Let $a_{v}=\sum_{j=1}^{m} \sum_{l=1}^{r} w^{k_{v} h_{j} n_{l}}$, where $w=e^{\frac{2 \pi i}{n}}$ and $v=1,2, \cdots, s$. Then the Galois polynomial from a quotient group is defined as

$$
\Psi_{n, H}(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{s}\right) .
$$

In this paper, we define two kinds of reduced modular Galois polynomials $\Psi_{n, H}^{r e}(x)$ having real roots by using $\mathbb{Z}_{n}^{*} /\langle n-1\rangle$, and if $n=4 m$ two kinds: $\Psi_{n, H}^{r e}(x)$ and additionally $\Psi_{n, H}^{i m}(x)$ having pure imaginary roots. They are constructed in two ways from

$$
\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{2}-1\right\rangle\right) .
$$

$\langle n-1\rangle$ is the multiplicative group modulo n generated by $n-1$.
If $H=N \times M$ is a subgroup of \mathbb{Z}_{n}^{*}, then M is a subgroup of \mathbb{Z}_{n}^{*} / N and their corresponding Galois polynomials are identical. So Galois polynomials from quotient groups have integer coefficients as other Galois polynomials,[6, Theorem2.3].

2. Galois polynomials from $\mathbb{Z}_{n}^{*} /\langle n-1\rangle$

Given a positive integer n, then the integers in the range $1, \ldots, n-1$ that are coprime to n form a group with multiplication modulo n. It is denoted by \mathbb{Z}_{n}^{*} and is called the multiplicative group of integers modulo n.

It is well known that \mathbb{Z}_{n}^{*} has a primitive root, equivalently, \mathbb{Z}_{n}^{*} is cyclic, if and only if $n \in\left\{2,4, p^{k}, 2 p^{k}\right\}$, where p is an odd prime.

Definition 2.1. A helpful function in this paper is

$$
j(n)=\frac{\varphi(n)}{\lambda(n)},
$$

the quotient of Euler's totient function $\varphi(n)$ and the Carmichael function $\lambda(n) . \varphi(n)$ is the order and $\lambda(n)$ the exponent of \mathbb{Z}_{n}^{*}.

Definition 2.2. To simplify the writing we introduce the denotation

$$
\mathbb{Z}_{n}^{* / 2}=\mathbb{Z}_{n}^{*} /\langle n-1\rangle .
$$

One could, therefore, also say \mathbb{Z}_{n}^{*} is cyclic, if and only if $j(n)=1$. Because w^{k} and w^{-k} are mirror points in the unit circle, there is a way [8] of halving the number of elements in \mathbb{Z}_{n}^{*} by the following special modulus.

Definition 2.3. If the representatives of the residue classes in \mathbb{Z}_{n}^{*} $\bmod n$ are selected in the interval $] 0, n[$, the following reduced modulus returns values in the interval $] 0, n / 2[$.

$$
a \bmod ^{*} n=\min (a \bmod n,(n-a) \bmod n),
$$

where $a \in \mathbb{N}$.
Note, mod* halves the number of elements of \mathbb{Z}_{n}^{*}.
$\langle 3\rangle \bmod 7=\{3,2,6,4,5,1\}$, where $6=n-1$
$\langle 3\rangle \bmod ^{*} 7=\{3,2,1\}$.
Let $n \in\left\{2^{k}(k>2), 4 p_{1}^{k_{1}}, p_{1}^{k_{1}} p_{2}^{k_{2}}, 2 p_{1}^{k_{1}} p_{2}^{k_{2}}\right\}$, where $p_{1}^{k_{1}}$ and $p_{2}^{k_{2}}$ are distinct odd prime powers satisfying $\left(\varphi\left(p_{1}^{k_{1}}\right), \varphi\left(p_{2}^{k_{2}}\right)\right)=2$, then $j(n)=2$. The order of the group is halved, the exponent remains. It is said in [4] that the group \mathbb{Z}_{n}^{*} has semi-primitive roots.

The reduced modulus $\left(\bmod ^{*} n\right)$ may also be applied to $n \in\left\{2,4, p^{k}\right.$, $\left.2 p^{k}\right\}$, where $j(n)=1$, by halving order and exponent of \mathbb{Z}_{n}^{*}. See the example above for $n=7$.

To study the Galois polynomials from $\mathbb{Z}_{n}^{* / 2}$ the following function is useful.

Theorem 2.4. The function s_{k} is given by the following explicit formula

$$
s_{k}=2^{1-k} \sum_{j=0}^{\lfloor k / 2\rfloor}(-1)^{j}\binom{k}{2 j} s^{k-2 j}\left(4-s^{2}\right)^{j},
$$

where $s_{k}=w^{k}+w^{-k}=2 \cos \left(\frac{2 \pi}{n} k\right)$ and $s=s_{1}$.
Proof. We expand $(a \pm b)^{k}$ and collect the terms according to the parity of the exponents of b

$$
\begin{aligned}
(a \pm b)^{k} & =\sum_{j=0}^{k}\binom{k}{j} a^{k-j} b^{j} \\
& =\sum_{j=0}^{\lfloor k / 2\rfloor}\binom{k}{2 j} a^{k-2 j} b^{2 j} \pm \sum_{j=0}^{\lceil k / 2-1\rceil}\binom{k}{2 j+1} a^{k-2 j-1} b^{2 j+1} .
\end{aligned}
$$

By adding the expressions of above, we get

$$
(a+b)^{k}+(a-b)^{k}=2 \sum_{j=0}^{\lfloor k / 2\rfloor}\binom{k}{2 j} a^{k-2 j} b^{2 j} .
$$

Substituting $a=w+w^{-1}$ and $b=w-w^{-1}$ completes the proof.
The functions s_{k} may also be calculated by the following recurrence relations

$$
s_{k}=s \cdot s_{k-1}-s_{k-2}
$$

or

$$
s_{k}=s_{j} \cdot s_{k-j}-s_{k-2 j}
$$

with the starting points $s_{0}=2, s_{1}=s, s_{2}=s^{2}-2, s_{3}=s^{3}-3 s$.
Let $\langle n-1\rangle=\{1, n-1\}$ be a subgroup of \mathbb{Z}_{n}^{*} and consider the quotient group $\mathbb{Z}_{n}^{* / 2}$. Let H^{\prime} be a subgroup of $\mathbb{Z}_{n}^{* / 2}$ and $\left\{r_{1} H^{\prime}, r_{2} H^{\prime}, \cdots, r_{l} H^{\prime}\right\}$ be its quotient group. For each $k=1,2, \cdots, l$, we define $b_{k}=\sum_{h \in H^{\prime}} s_{r_{k} h}$, where $s_{r_{k} h}$ is defined as above and get the first kind of a Galois polynomial from a quotient group $\Psi_{n, H^{\prime}}^{r e}(x)=\left(x-b_{1}\right)\left(x-b_{2}\right) \cdots\left(x-b_{l}\right)$. Since b_{i} 's are sums of s_{k} 's, $\Psi_{n, H^{\prime}}(x)$ has only real roots.

Once the $s_{k}^{\prime} s$ have been defined one can calculate the Galois polynomials by the following formula

$$
\Psi_{n}^{r e}(x)=\prod_{k \in \mathbb{Z}_{n}^{* / 2}}\left(x-s_{k}\right) .
$$

Example 2.5. When $n=21$,

$$
\begin{aligned}
& \Phi_{21,\langle-1\rangle}=x^{6}-x^{5}-6 x^{4}+6 x^{3}+8 x^{2}-8 x+1=\Psi_{21}^{r e} \\
& \Phi_{21,\langle-1\rangle(8\rangle}=x^{3}-x^{2}-2 x+1=\Psi_{21,\langle 8\rangle}^{r e} \\
& \Phi_{21,\langle-1\rangle\langle 4\rangle}=x^{2}-x-5=\Psi_{21,\langle 4\rangle}^{r e}
\end{aligned}
$$

Note, in the reduced group $\mathbb{Z}_{n}^{* / 2}$ one writes $\langle 4\rangle=\{4,5,1\}$ instead of $\{4,16,1\}$. Remember, 16 and 5 are mirror points in the unit circle and have identical cosine functions.

Theorem 2.6. Let $\mathbb{Q}(s)$ be the simple extension field of \mathbb{Q} containing $s=w+w^{-1}$. Then the Galois group Gal $_{\mathbb{Q}} \mathbb{Q}(s)$ is isomorphic to $\mathbb{Z}_{n}^{*} /\langle-1\rangle$.

Proof. Let σ_{k} be the map in $\operatorname{Gal}_{\mathbb{Q}} \mathbb{Q}(s)$ which sends w to w^{k}, where $k \in \mathbb{Z}_{n}^{*}$ and $w=e^{\frac{2 \pi i}{n}}$. Define $\Sigma: \mathbb{Z}_{n}^{*} /\langle-1\rangle \rightarrow \operatorname{Gal}_{\mathbb{Q}} \mathbb{Q}(s)$ as $\Sigma(k)=$
$\left.\sigma_{k}\right|_{\mathbb{Q}(s)}$, i.e., the restriction of σ_{k} to $\mathbb{Q}(s)$. Since $\left.\sigma_{k}\right|_{\mathbb{Q}(s)}=\left.\sigma_{-k}\right|_{\mathbb{Q}(s)}, \Sigma$ is a well-defined map. Then

$$
\left\{\begin{array}{l}
\sigma_{k}\left(s_{t}\right)=\sigma_{k}\left(w^{t}+w^{-t}\right)=w^{k t}+w^{-k t} \\
\sigma_{-k}\left(s_{t}\right)=\sigma_{-k}\left(w^{t}+w^{-t}\right)=w^{-k t}+w^{k t} .
\end{array}\right.
$$

Since $\Sigma(k)$ sends s to s_{k} and s_{k} 's are all different, Σ is a bijective map. Also Σ is a homomorphism, i.e., $\Sigma\left(k_{1} k_{2}\right)(s)=s_{k_{1} k_{2}}=\left(\Sigma_{k_{1}} \circ \Sigma_{k_{2}}\right)(s)$.

3. Galois polynomials from $\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{2}+1\right\rangle\right)$

Given a number $n=4 m$, where m is a nonnegative integer. Then the multiplicative group of integers modulo n has an additional subgroup of order 2 , namely $\left\langle\frac{n}{2}+1\right\rangle$. $\langle n-1\rangle\left\langle\frac{n}{2}+1\right\rangle$ is the Klein four-group and could be expressed also by $\langle n-1\rangle\left\langle\frac{n}{2}-1\right\rangle$.

We have now four symmetric points on the unit circle $w^{k}, w^{n / 2-k}$, $w^{n / 2+k}$ and w^{n-k} and can reduce the number of elements in \mathbb{Z}_{n}^{*} to a quarter.

Definition 3.1. To simplify the writing we introduce the denotation

$$
\mathbb{Z}_{n}^{* / 4}=\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{2}+1\right\rangle\right) .
$$

Definition 3.2. If $n=4 m$, then the following special modulus returns representatives in the interval $] 0, \frac{n}{4}[$.

$$
a \bmod ^{*} \frac{n}{2}=\min \left(a \bmod \frac{n}{2},(n-a) \bmod \frac{n}{2}\right),
$$

where $a \in \mathbb{N}$.
Theorem 3.3. Let $n=4 m(m \in \mathbb{N})$ and $\mathbb{Z}_{n}^{* / 4}$ be the multiplicative group of integers $\bmod ^{*} \frac{n}{2}$. Then the group $\mathbb{Z}_{n}^{* / 4}$ is cyclic, if and only if $n \in\left\{2^{k}(k>3), 4 p^{k}, 8 p^{k}, 4 p_{1}^{k_{1}} p_{2}^{k_{2}}\right\}$, where $p_{1}^{k_{1}}$ and $p_{2}^{k_{2}}$ are different odd prime powers satisfying $\left(\varphi\left(p_{1}^{k_{1}}\right), \varphi\left(p_{2}^{k_{2}}\right)\right)=2$.

Proof. If n is divisible by 4 and $n \in\left\{2^{k}(k>3), 4 p^{k}\right\}$ with $j(n)=2$ or $n \in\left\{8 p^{k}, 4 p_{1}^{k_{1}} p_{2}^{k_{2}}\right\}$ with $j(n)=4$, then $\mathbb{Z}_{n}^{* / 4}$ is cyclic, because the order is quartered $\left|\mathbb{Z}_{n}^{* / 4}\right|=\left|\mathbb{Z}_{n}^{*}\right| / 4$ for all n, and for $n \in\left\{2^{k}(k>3), 4 p^{k}\right\}$ the exponent $\lambda(n)$ is halved.

Example 3.4. When $n=84$,

$$
\begin{aligned}
& \mathbb{Z}_{n}^{* / 4}=\{1,5,11,13,17,19\}, \\
& \langle 11\rangle=\left\{11,11^{2}, 11^{3}, \cdots, 11^{6}\right\}\left(\bmod ^{*} \frac{n}{2}\right)=\{11,5,13,17,19,1\} .
\end{aligned}
$$

The "primitive" roots of $\mathbb{Z}_{n}^{* / 4}$ are 11 and 19.
Let $w^{k}=e^{\frac{2 \pi i k}{n}}$ be a point on the unit circle. Then the group $\langle n-1\rangle$ applied to k mirrors the points at the x-axis, the addition of the two points yields $w^{k}+w^{n-k}=2 \cos \left(\frac{2 \pi k}{n}\right)$. The group $\left\langle\frac{n}{2}-1\right\rangle$ mirrors the points at the y-axis, the addition yields $w^{k}+w^{\frac{n}{2}-k}=2 i \sin \left(\frac{2 \pi k}{n}\right)$. The combination of the two groups, namely $\left\langle\frac{n}{2}+1\right\rangle$, mirrors the points at the origin, the addition yields $w^{k}+w^{\frac{n}{2}+k}=0$.

Still given $n=4 m$ and using the definition of s_{k} above, we have two special cases:

Case $\mathbb{Z}_{n}^{*} /\langle n-1\rangle$: The Galois polynomial has typical pairs of factors $\left(x-s_{k}\right)\left(x+s_{k}\right)=x^{2}-s_{k}^{2}$ and has only real roots

$$
\Psi_{n}^{r e}(x)=\prod_{k \in \mathbb{Z}_{n}^{* / 4}}\left(x^{2}-s_{k}^{2}\right) .
$$

Case $\mathbb{Z}_{n}^{*} /\left\langle\frac{n}{2}-1\right\rangle$: The Galois polynomial has typical pairs of factors $\left(x-2 i \sin \left(\frac{2 \pi k}{n}\right)\right)\left(x+2 i \sin \left(\frac{2 \pi k}{n}\right)\right)=x^{2}+4 \sin \left(\frac{2 \pi k}{n}\right)^{2}=x^{2}+4-s_{k}^{2}$ and has only pure imaginary roots.

$$
\Psi_{n}^{i m}(x)=\prod_{k \in \mathbb{Z}_{n}^{* / 4}}\left(x^{2}+4-s_{k}^{2}\right)
$$

Example 3.5. When $n=20$,
Case $\mathbb{Z}_{n}^{*} /\langle n-1\rangle$:

$$
\begin{aligned}
& \Phi_{20,\langle n-1\rangle}=x^{4}-5 x^{2}+5=\Psi_{20}^{r e} \\
& \Phi_{20,\langle n-1\rangle\langle 3\rangle}=x^{2}-5=\Psi_{20,\langle 3\rangle}^{r e}
\end{aligned}
$$

Case $\mathbb{Z}_{n}^{*} /\left\langle\frac{n}{2}-1\right\rangle$:

$$
\begin{aligned}
& \Phi_{20,\langle n / 2-1\rangle}=x^{4}+3 x^{2}+1=\Psi_{20}^{i m} \\
& \Phi_{20,\langle n / 2-1\rangle\langle 3\rangle}=x^{2}+3=\Psi_{20,\langle 3\rangle}^{i m} .
\end{aligned}
$$

4. Galois polynomials from $\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{4}+1\right\rangle\right)$

Given a number $n=8 m$, where m is a positive integer. Then the multiplicative group of integers modulo n can be halved a third time. The group $\left\langle\frac{n}{4}+1\right\rangle$ comprises $\left\langle\frac{n}{2}+1\right\rangle$ as a subgroup.

We have now eight symmetric points on the unit circle and can reduce the number of elements in \mathbb{Z}_{n}^{*} to an eighth.

Definition 4.1. To simplify the writing we introduce the denotation

$$
\mathbb{Z}_{n}^{* / 8}=\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{4}+1\right\rangle\right) .
$$

Definition 4.2. If $n=8 m$, then the following special modulus returns representatives in the interval $\left[0, \frac{n}{8}\right]$.

$$
a \bmod ^{*} \frac{n}{4}=\min \left(a \bmod \frac{n}{4},(n-a) \bmod \frac{n}{4}\right),
$$

where $a \in \mathbb{N}$.
Theorem 4.3. Let $n=8 m(m \in \mathbb{N})$ and $\mathbb{Z}_{n}^{* / 8}$ be the multiplicative group of integers mod ${ }^{*} \frac{n}{4}$. Then the group $\mathbb{Z}_{n}^{* / 8}$ is cyclic, if $n \in$ $\left\{2^{k}(k>3), 8 p^{k}, 16 p^{k}, 8 p_{1}^{k_{1}} p_{2}^{k_{2}}\right\}$, where $p_{1}^{k_{1}}$ and $p_{2}^{k_{2}}$ are different odd prime powers satisfying $\left(\varphi\left(p_{1}^{k_{1}}\right), \varphi\left(p_{2}^{k_{2}}\right)\right)=2$.

Proof. If n is divisible by 8 and $n \in\left\{2^{k}(k>3), 8 p^{k}\right\}$ with $j(n)=2$ or $n \in\left\{16 p^{k}, 8 p_{1}^{k_{1}} p_{2}^{k_{2}}\right\}$ with $j(n)=4$, then $\mathbb{Z}_{n}^{* / 8}$ is cyclic, because the order is divided by eight $\left|\mathbb{Z}_{n}^{* / 8}\right|=\left|\mathbb{Z}_{n}^{*}\right| / 8$ for all n, and for $n \in\left\{2^{k}(k>3), 8 p^{k}\right\}$ the exponent $\lambda(n)$ is halved.

Example 4.4. When $n=168$,

$$
\begin{aligned}
& \mathbb{Z}_{n}^{* / 8}=\{1,5,11,13,17,19\}, \\
& \langle 11\rangle=\left\{11,11^{2}, 11^{3}, \cdots, 11^{6}\right\}\left(\bmod ^{*} \frac{n}{4}\right)=\{11,5,13,17,19,1\} .
\end{aligned}
$$

Still given $n=8 m$ and using the definition of s_{k} above, we have two special cases:
Case $\mathbb{Z}_{n}^{*} /\langle n-1\rangle$, Galois polynomial with real roots:

$$
\Psi_{n}^{r e}(x)=\prod_{k \in \mathbb{Z}_{n}^{* / 8}}\left(x^{4}-4 x^{2}+4 s_{k}^{2}-s_{k}^{4}\right)
$$

Case $\mathbb{Z}_{n}^{*} /\left\langle\frac{n}{2}-1\right\rangle$, Galois polynomial with pure imaginary roots:

$$
\Psi_{n}^{i m}(x)=\prod_{k \in \mathbb{Z}_{n}^{* / 8}}\left(x^{4}+4 x^{2}+4 s_{k}^{2}-s_{k}^{4}\right) .
$$

Example 4.5. When $n=104=8 \cdot 13$, one gets $\langle 7\rangle \bmod ^{*} \frac{n}{4}=$ $\{7,3,5,9,11,1\}$.
The Galois polynomials $\Psi_{n}^{r e}$ and $\Psi_{n}^{i m}$ have - disregarding the signs - the same coefficients. The minus signs are for $\Psi_{n}^{r e}$.

$$
\begin{aligned}
& \Psi_{104,\langle \rangle\rangle}^{r e / i m}(x)=x^{4} \mp 4 x^{2}+11, \\
& \Psi_{104, i m}^{r e s\rangle}(x)=x^{8} \mp 8 x^{6}+27 x^{4} \mp 44 x^{2}+27, \\
& \Psi_{104, \text { im }}^{r e / \text { im }}(x)=x^{12} \mp 12 x^{10}+59 x^{8} \mp 152 x^{6}+212 x^{4} \mp 144 x^{2}+31,
\end{aligned}
$$

$$
\Psi_{104,\langle 1\rangle}^{r e / i m}(x)=x^{24} \mp 24 x^{22}+251 x^{20} \mp 1500 x^{18}+\ldots+1
$$

5. Galois polynomials from $\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{q}-1\right\rangle\right)$

Given a number $n=q^{2} m$, where q is an odd prime and m a positive integer. Then the multiplicative group of integers modulo n has an additional subgroup of order q , namely $\left\langle\frac{n}{q}-1\right\rangle$, beside the standard subgroup $\langle n-1\rangle$ of order 2 .

We have now $2 q$ symmetric points on the unit circle and can reduce the number of elements in \mathbb{Z}_{n}^{*} by the factor $2 q$.

Definition 5.1. To simplify the writing we introduce the denotation

$$
\mathbb{Z}_{n}^{* / 2 q}=\mathbb{Z}_{n}^{*} /\left(\langle n-1\rangle\left\langle\frac{n}{q}-1\right\rangle\right) .
$$

Definition 5.2. If $n=q^{2} m$, then the following special modulus returns representatives in the interval $\left[0, \frac{n}{2 q}\right]$.

$$
a \bmod ^{*} \frac{n}{q}=\min \left(a \bmod \frac{n}{q},(n-a) \bmod \frac{n}{q}\right),
$$

where $a \in \mathbb{N}$.
Theorem 5.3. The Galois polynomials from $\mathbb{Z}_{n}^{* / 2 q}$ are all reducible over \mathbb{Q}.

Proof. The roots a_{k} of the Galois polynomial

$$
\Psi_{n}=\prod_{k \in \mathbb{Z}_{n}^{* / 2 q}}\left(x-a_{k}\right)
$$

are

$$
a_{k}=s_{k}+s_{f-k}+s_{f+k}+s_{2 f-k}+s_{2 f+k}+\ldots+s_{t f-k}+s_{t f+k},
$$

where s_{k} are defined as before and $f=\frac{2 n}{q}$ and $t=\frac{q-1}{2}$.
Because of the symmetric positions on the unit circle of the elements of the group $\left\langle\frac{n}{q}-1\right\rangle$, we have $a_{k}=0$ and therefore $\Psi_{n}=x^{h}$ with $h=\left|\mathbb{Z}_{n}^{* / 2 q}\right|$.

Examples are $n=45$ or $n=75$. One could extend this section even to $n=105$, where n and $\varphi(n)$ are divisible by 3 resulting in reducible Galois polynomials.

6. Cyclic Semiprimes

In studying the applications of mod* the term cyclic semiprime [8] was created. Note, all products of twin primes or pairs of Sophie Germain primes are cyclic semiprimes.

DEFINITION 6.1. Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$ with $\left(\varphi\left(p_{1}^{k_{1}}\right), \varphi\left(p_{2}^{k_{2}}\right)\right)=2$, where p_{i} are distinct odd primes and k_{i} positive integers. Then n is called a cyclic semiprime.

If n is a cyclic semiprime, $\mathbb{Z}_{n}^{*} /\langle-1\rangle$ is cyclic. In this case, Galois polynomials over $\mathbb{Z}_{n}^{* / 2}$ can be calculated more easily.

REMARK 6.2. If n is an odd cyclic semiprime, then $2 n$ is it as well. The focus below is on n.

The odd cyclic semiprimes $<100>$ are $15,21,33,35,39,45,51,55$, $57,69,75,77,87,93,95$ and 99 . Note, although the numbers $63,65,85$ and 91 are composed of two primes, they are not cyclic semiprimes.

Theorem 6.3. There are infinitely many cyclic semiprimes.
Proof. There are even infinitely many cyclic semiprimes with a fixed first factor $p_{1}^{k_{1}}$. Let $\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}$ be the set of all prime factors of $\varphi\left(p_{1}^{k_{1}}\right) / 2$. Powers of q_{i} need not to be considered. There is a chance of $\frac{q_{i}-2}{q_{i}-1}$ for odd q_{i} and of $\frac{1}{2}$ for $q_{i}=2$ that $\varphi\left(p_{2}^{k_{2}}\right) / 2$ is not divisible by q_{i} and a combined chance of

$$
\begin{align*}
c & =\prod_{i=1}^{l} \frac{q_{i}-2}{q_{i}-1} \quad \text { or } \tag{6.1}\\
c & =\frac{1}{2} \cdot \prod_{i=2}^{l} \frac{q_{i}-2}{q_{i}-1}
\end{align*}
$$

if $q_{1}=2$, that $\varphi\left(p_{2}^{k_{2}}\right) / 2$ is not divisible by any q_{i}. We will show below that $c \approx 1 / 2$.

The denominator $q_{i}-1$ follows from the fact, that in randomly selected integers every $q_{i}{ }^{\text {th }}$ number is divisible by q_{i}. The numerator $q_{i}-2$ takes additional in account that $\left(q_{i}-1\right) / 2$ is not an allowed divisior of $\varphi\left(p_{2}^{k_{2}}\right) / 2$, because p_{2} would be a multiple of q_{i}.
Because c is a nonzero constant for any $p_{1}^{k_{1}}$ and because there exist infinitely many primes p_{2}, the theorem follows.

Examples: All numbers of the form $n=3 p(p>3)$ with $c=1$ are cyclic semiprimes.
Numbers $n \in\{5 p, 9 p, 21 p, 61 p\}$ would have the chance $c=\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{16}\right\}$, respectively.

Theoretically, one could expect a value of

$$
c_{\text {theo }}=\left(\frac{1}{2}\right)^{\frac{1}{2}} \prod_{i=2}^{\infty}\left(\frac{p_{i}-2}{p_{i}-1}\right)^{\frac{1}{p_{i}}} \approx 0.499075 \ldots,
$$

where p_{i} is the $i^{\text {th }}$ prime.
It is difficult to verify this result heuristically. One procedure is to prepare a list of all odd $p^{k}<m$ up to a maximum m, then to determine the frequency of $\left(\varphi\left(p_{1}^{k_{1}}\right), \varphi\left(p_{2}^{k_{2}}\right)\right)=2$ in all pairs $p_{1} \neq p_{2}$. We did this up to $m=10^{4}$ testing more than 10^{8} pairs and found that the results begin at $c_{\text {heur }} \approx 5.0$, do not converge, but rather fluctuate down to $c_{\text {heur }} \approx 4.96$. A converging procedure was not found.

The constant c estimates the probability that a number $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$ is a cyclic semiprime. It is similar - but not analogue - to Artin's well known constant for primes.

References

[1] J. R. Bastida and R. Lyndon, Field Extensions and Galois Theory, Encyclopedia of Mathematics and Its Application, Addison-Wesley Publishing Company, 1984.
[2] T. W. Hungerford, Abstract Algebra : An Introduction, Brooks/Cole, Cengage Learning, 2012.
[3] S. Lang, Algebra, 2nd ed. Addison-Wesley Publising Company, USA, 1984.
[4] K. S. Lee, M. Kwon, and G. C. Shin, Multiplicative groups of integers with semiprimitive roots modulo n, Commun. Korean Math. Soc, 28 (2013), no.1, 71-77.
[5] K. S. Lee, J. E. Lee, and J. H. Kim, semi-cyclotomic polynomials, Honam Mathematical Journal, 37 (2015), no.4, 469-472.
[6] M. Kwon, J. E. Lee, and K. S. Lee, Galois irreducible polynomials, Commun. Korean Math. Soc, 32 (2017), no.1, 1-6.
[7] K. S. Lee and J. E. Lee, Classification of Galois Polynomials, Honam Mathematical Journal, 39 (2017), no.2, 259-265.
[8] Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half The Amount of Residues, preprint, https://arxiv.org/abs/1504.02757.
[9] P. Ribenboim, Algebraic Numbers, John Wiley and Sons Inc. 1972.
[10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford: Oxford University Press, UK, 1980.

Department of Mathematics Education
Korea National University of Education
Cheongjusi, Chungbuk 363-791, Republic of Korea
E-mail: ksleeknue@gmail.com
**
Department of Mathematics Education
Korea National University of Education
Cheongjusi, Chungbuk 363-791, Republic of Korea
E-mail: dlwldms818@gmail.com

Schanzmättelistrasse 27, 5000 Aarau, Switzerland
E-mail: braendli@hispeed.ch

Rotspoelstraat 15, 3001 Heverlee-Leuven, Belgium
E-mail: tim.beyne@student.kuleuven.be

