• Title/Summary/Keyword: Multiple-input multiple-output MIMO

Search Result 672, Processing Time 0.027 seconds

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.

An Efficient Soft-Output MIMO Detection Method Based on a Multiple-Channel-Ordering Technique

  • Im, Tae-Ho;Park, In-Soo;Yoo, Hyun-Jong;Yu, Sung-Wook;Cho, Yong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple-input multiple-output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple-channel-ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13-${\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

Multiple Noise OFDM Waveforms for Wide Swath MIMO SAR (광역 MIMO SAR 영상 획득을 위한 다중 잡음 OFDM 파형 활용 연구)

  • Moon, Minjung;Song, Kyungmin;Lee, Wookyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.464-472
    • /
    • 2018
  • Future spaceborne satellite synthetic aperture radar(SAR) system is expected to acquire high-resolution images over wide swath areas. Conventional SAR systems suffer from ambiguity problems in both azimuth and range directions that lead to image quality degradation. Recently, multiple input multiple output(MIMO) SAR techniques having multiple orthogonal waveforms are proposed to overcome the conventional ambiguity problems in wide-swath imaging modes. In this paper, noisy orthogonal frequency division multiplex(OFDM) waveforms are developed to reduce the ambiguity problems and suppress the image quality degradation. SAR simulations are performed to evaluate the performance of the proposed technique for wide-swath SAR imaging.

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

Characteristic-Function-Based Analysis of MIMO Systems Applying Macroscopic Selection Diversity in Mobile Communications

  • Jeong, Wun-Cheol;Chung, Jong-Moon;Liu, Dongfang
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.355-364
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) systems can provide significant increments in capacity; however, the capacity of MIMO systems degrades severely when spatial correlation among multipath channels is present. This paper demonstrates that the influence of shadowing on the channel capacity is more substantial than that of multipath fading; therefore, the shadowing effect is actually the dominant impairment. To overcome the composite fading effects, we propose combining macroscopic selection diversity (MSD) schemes with MIMO technology. To analyze the system performance, the capacity outage expression of MIMO-based MSD (MSD-MIMO) systems using a characteristic function is applied. The analytic results show that there are significant improvements when MSD schemes are applied, even for the two-base-station diversity case. It is also observed that the effect of spatial correlation due to multipath fading is almost negligible when multiple base stations cooperatively participate in the mobile communication topology.

  • PDF

Performance Analysis of Adaptive Bitloading Algorithm in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 적응비트로딩 알고리즘의 성능평가)

  • Lee Min-Hyouck;Byon Kuk-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.752-757
    • /
    • 2006
  • In the case of the requirement of high speed transmission, OFDM is a powerful technique employed in communications systems suffering from frequency selective fading. In this paper, we apply an optimal adaptive bitloading algorithm technique. The BER performance of the fixed-rate SISO and adaptive SISO is simulated. Specially, we can decompose the MIMO channel into the SISO channel by making use of the singular value decomposition(SVD) assuming channel knowledge in a multipath environment. As a results of simulation, we confirmed that the BER enhancement of MIMO-OFDM system with the bitloadins algorithm was superior to the SISO-OFDM system.

A Simple AMC Technique using ARQ for a MIMO-OFDM System based on IEEE 802.11a WLANs (IEEE 802.11a WLAN 기반 MIMO-OFDM 시스템에서 ARQ를 이용한 간단한 적응변조 기법)

  • 유승연;김경연;이충용;홍대식;박현철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.1-8
    • /
    • 2004
  • A simple AMC (Adaptive Modulation and Coding) technique using ARQ (Automatic Repeat Request) for a MIMO (Multiple Input Multiple Output) system is proposed which does not require the additional feedback. In addition, the proposed AMC technique is different from the conventional technique in the aspect of considering the MCS (Modulation and Coding Scheme) level from the previous packet. The proposed technique can discard fewer amounts of unsuitable packets than the conventional technique. In the proposed system not only same rate control method for transmit antennas but also individual rate control method can be applied. The performance of the proposed technique is verified under a MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system based on WLAN (Wireless Local Area Network), IEEE 802.11a. The results of the computer simulation show that a MIMO system with the proposed technique achieves higher throughput than one with a fixed transmission rate.

Asymptotic Behavior of the output SINR at MMSE receivers in a MIMO MC-CDMA system (MIMO MC-CDMA시스템에서 MMSE 수신기 출력의 점근적 양상)

  • Kim, Kyeong-Yeon;Shim, Sei-Joon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers. A previous work of a single antenna MC-CDMA system cannot directly applied to a MIMO MC-CDMA system because some assumptions for single antenna do not match the case of multiple antenna. Therefore this paper expands the concept of freeness to MIMO system by using the Marcenko Pastur law. The analysis shows that the output SINR asymptotically converges to a deterministic value and finds the value on the assumption of freeness. From the analysis, it is easy to calculate bit error rate and the calculation is verified by simulations.

Rate Bounds for MIMO Relay Channels

  • Lo, Caleb K.;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • This paper considers the multi-input multi-output (MIMO) relay channel where multiple antennas are employed by each terminal. Compared to single-input single-output (SISO) relay channels, MIMO relay channels introduce additional degrees of freedom, making the design and analysis of optimal cooperative strategies more complex. In this paper, a partial cooperation strategy that combines transmit-side message splitting and block-Markov encoding is presented. Lower bounds on capacity that improve on a previously proposed non-cooperative lower bound are derived for Gaussian MIMO relay channels.

Performance Analysis of Adaptive LDPC Coded MIMO-OFDM Systems (적응 LDPC Coded MIMO-OFDM 성능 분석)

  • Kim, Jin-Woo;Cho, Han-You;Lee, Sang-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1033-1034
    • /
    • 2006
  • The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.

  • PDF