• Title/Summary/Keyword: Multiple-input multiple-output (MIMO) multiplexing

Search Result 139, Processing Time 0.023 seconds

Efficient Transmission Mode Selection Scheme for MIMO-based WLANs

  • Thapa, Anup;Kwak, Kyung Sup;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2365-2382
    • /
    • 2014
  • While single-user spatial multiplexing multiple-input multiple-output (SU-MIMO) allows spatially multiplexed data streams to be transmitted to one node at a time, multi-user spatial multiplexing MIMO (MU-MIMO) enables the simultaneous transmission to multiple nodes. However, if the transmission time required to send packets to each node varies considerably, MU-MIMO may fail to utilize the available MIMO capacity to its full potential. The transmission time typically depends upon two factors: the link quality of the selected channel and the data length (packet size). To utilize the cumulative capacity of multiple channels in MIMO applications, the assignment of channels to each node should be controlled according to the measured channel quality or the transmission queue status of the node.A MAC protocol design that can switch between MU-MIMO and multiple SU-MIMO transmissions by considering the channel quality and queue status information prior to the actual data transmission (i.e., by exchanging control packets between transmitter and receiver pairs) could address such issues in a simple but in attractive way. In this study, we propose a new MAC protocol that is capable of performing such switching and thereby improve the system performance of very high throughput WLANs. The detailed performance analysis demonstrates that greater benefits can be obtained using the proposed scheme, as compared to conventional MU-MIMO transmission schemes.

Detection Techniques for MIMO Multiplexing: A Comparative Review

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.647-666
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) multiplexing is an attractive technology that increases the channel capacity without requiring additional spectral resources. The design of low complexity and high performance detection algorithms capable of accurately demultiplexing the transmitted signals is challenging. In this technical survey, we introduce the state-of-the-art MIMO detection techniques. These techniques are divided into three categories, viz. linear detection (LD), decision-feedback detection (DFD), and tree-search detection (TSD). Also, we introduce the lattice basis reduction techniques that obtain a more orthogonal channel matrix over which the detection is done. Detailed discussions on the advantages and drawbacks of each detection algorithm are also introduced. Furthermore, several recent author contributions related to MIMO detection are revisited throughout this survey.

Power based scheduling for Collaborative MIMO system (Collaborative MIMO 시스템을 위한 전력기반 스케줄링 방식)

  • Kim, Young-Joon;Lee, Jung-Seung;Baik, Doo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1209-1216
    • /
    • 2008
  • In order to maximize spectrum efficiency and data rate MIMO(Multiple Input Multiple Output) is adopted to wireless system. OFDM-based WiMAX and LTE accommodate MIMO as mandatory technology. STC(Space Time Coding) and SM(Spatial Multiplexing) are used in downlink while in uplink C-MIMO(Collaborative MIMO) is used to improve data throughput. In this paper conventional pairing schemes, RPS(Random Pairing Scheduling) and DPS(Determinant Pairing Scheduling) are analyzed. From the analysis the performance of DPS algorithm is better than that of RPS because DPS measures orthogonal factor between paired users. However, there are potential problems such as hardware complexity and performance. To overcome the issues Power-Based Scheduling(PBS) algorithm is proposed for C-MIMO. PBS can provide higher performance compared to RPS and dramatically reduce hardware complexity compared to DPS

MIMO Precoding in 802.16e WiMAX

  • Li, Qinghua;Lin, Xintian Eddie;Zhang, Jianzhong (Charlie)
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) transmit pre-coding/beamforming can significantly improve system spectral efficiency. However, several obstacles prevent precoding from wide deployment in early wireless networks: The significant feedback overhead, performance degradation due to feedback delay, and the large storage requirement at the mobile devices. In this paper, we propose a precoding method that addresses these issues. In this approach, only 3 or 6 bits feedback is needed to select a precoding matrix from a codebook. There are fifteen codebooks, each corresponding to a unique combination of antenna configuration (up to 4 antennas) and codebook size. Small codebooks are prestored and large codebooks are efficiently computed from the prestored codebook, modified Hochwald method and Householder reflection. Finally, the feedback delay is compensated by channel prediction. The scheme is validated by simulations and we have observed significant gains comparing to space-time coding and antenna selection. This solution was adopted as a part of the IEEE 802.16e specification in 2005.

Limited Feedback Interference Alignment in MIMO Power Line Communication with Common-mode Reception

  • Ahiadormey, Roger Kwao;Anokye, Prince;Park, Seok-Hwan;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This paper considers a multiple-input multiple-output (MIMO) power line communication (PLC) network where interference alignment (IA) technique is used to mitigate the interference that arises in multi-user networks. IA as a precoding technique requires perfect channel state information (CSI) to achieve maximum multiplexing gain. Due to the common-mode reception at the receiver ports, we assume imperfect CSI for the IA precoding design. Here, the CSI is quantized and sent via feedback to the transmit ports. For different levels of CSI quantization, we evaluate the performance of various IA algorithms via Monte Carlo simulations. Simulation results reveal the superior performance of the proposed scheme due to common-mode reception in IA MIMO PLC networks. It is shown that for a quantization level of 5 bits, the CM reception improves the sum-rate by up to 70%.

Codebook-Based Interference Alignment for Uplink MIMO Interference Channels

  • Lee, Hyun-Ho;Park, Ki-Hong;Ko, Young-Chai;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multiple-output (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute he transmit precoder and inform its quantized index to the associated user via limited rate feedback link. We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load to maintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF.

An Optimized Double-ABBA Quasi-Orthogonal Space Time Code with PIC Group Decoding (PIC 그룹 복호화를 이용한 최적화된 Double-ABBA 유사 직교 시공간 부호)

  • Hanif, Mohammad Abu;Lee, Moon Ho;Park, Ju Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In this paper we propose a system where we divide the group with 2 symbols. The two added symbols are separated by multiplexing and later added using the DE-multiplexing technique. In our proposed system a simple Partial Interference Cancelation (PIC) group decoding scheme is used for Double-ABBA(D-ABBA) Quasi-Orthogonal Space Time Code, which reduces the decoding complexity for the higher order Multiple Input Multiple Output (MIMO) space time block coding. Finally we compare the proposed scheme performance using the different modulation schemes.

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

A New Efficient Group-wise Spatial Multiplexing Design for Closed-Loop MIMO Systems (폐루프 다중입출력 시스템을 위한 효율적인 그룹별 공간 다중화 기법 설계)

  • Moon, Sung-Myun;Lee, Heun-Chul;Kim, Young-Tae;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.322-331
    • /
    • 2010
  • This paper introduces a new efficient design scheme for spatial multiplexing (SM) systems over closed loop multiple-input multiple-output (MIMO) wireless channels. Extending the orthogonalized spatial multiplexing (OSM) scheme which was developed recently for transmitting two data streams, we propose a new SM scheme where a larger number of data streams can be supported. To achieve this goal, we partition the data streams into several subblocks and execute the block-diagonalization process at the receiver. The proposed scheme still guarantees single-symbol maximum likelihood (ML) detection with small feedback information. Simulation results verify that the proposed scheme achieves a huge performance gain at a bit error rate (BER) of $10^{-4}$ over conventional closed-loop schemes based on minimum mean-square error (MSE) or bit error rate (BER) criterion. We also show that an additional 2.5dB gain can be obtained by optimizing the group selection with extra feedback information.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.