• Title/Summary/Keyword: Multiple sensors

Search Result 724, Processing Time 0.025 seconds

An Incremental Statistical Method for Daily Activity Pattern Extraction and User Intention Inference

  • Choi, Eu-Ri;Nam, Yun-Young;Kim, Bo-Ra;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.219-234
    • /
    • 2009
  • This paper presents a novel approach for extracting simultaneously human daily activity patterns and discovering the temporal relations of these activity patterns. It is necessary to resolve the services conflict and to satisfy a user who wants to use multiple services. To extract the simultaneous activity patterns, context has been collected from physical sensors and electronic devices. In addition, a context model is organized by the proposed incremental statistical method to determine conflicts and to infer user intentions through analyzing the daily human activity patterns. The context model is represented by the sets of the simultaneous activity patterns and the temporal relations between the sets. To evaluate the method, experiments are carried out on a test-bed called the Ubiquitous Smart Space. Furthermore, the user-intention simulator based on the simultaneous activity patterns and the temporal relations from the results of the inferred intention is demonstrated.

Analysis on the Impact of UWB Sensor on Broadband Wireless Communication System (UWB 센서에 의한 광대역 무선 시스템의 간섭 영향 분석)

  • Cheng, Yan-Ming;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper presents the impacts of Ultra Wide-Band(UWB) sensor using frequency of 4.5 GHz on Broadband Wireless communication system which uses frequency of 4.5 GHz. The Minimum Coupling Loss (MCL) method and Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) is used to evaluate the interference effects of UWB sensor on Broadband Wireless communication system, respectively. The minimum protection distance between single UWB sensor and mobile station of Broadband Wireless communication system should be more than 1.2 m to guarantee the co-existence. In case of multiple UWB sensors, UWB transmitting PSD of around -68.5 dBm/MHz below should be required to guarantee interference probability of 5% below for mobile station of Broadband Wireless communication system.

Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data (힐버트-황 변환에 통한 Hand Accelerometer 데이터의 핵심 패턴 추출)

  • Choe, Byeongseog;Suh, Jung-Yul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.179-190
    • /
    • 2017
  • Hand Accelerometers are widely used to detect human motion patterns in real-time. It is essential to reliably identify which type of activity is performed by human subjects. This rests on having accurate template of each activity. Many human activities are represented as a set of multiple time-series data from such sensors, which are mostly non-stationary and non-linear in nature. This requires a method which can effectively extract patterns from non-stationary and non-linear data. To achieve such a goal, we propose the method to apply Hilbert-Huang Transform which is known to be an effective way of extracting non-stationary and non-linear components from time-series data. It is applied on samples of accelerometer data to determine its effectiveness.

Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions (배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

A Study on the Indoor/Outdoor Positioning System Based on Multiple Sensors (다중 센서 기반의 실내외 측위 시스템에 관한 연구)

  • Hwang, Chi-Gon;Lee, Hae-Jun;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.643-644
    • /
    • 2018
  • Recently indoor and outdoor location tracking systems are operated in different ways. The indoor positioning method uses WiFi and BLE beacon positioning, and the outdoor positioning uses GPS and PDR. In this paper, it is a device to measure position by using it. It is used to check whether it is indoors or outdoors when measuring based on a smart phone, A automatic conversion method is needed. When using GPS in the room, it is difficult to distinguish the floor or space. We propose a method to solve this problem.

  • PDF

Various IoT Sensor based Laboratory Safety Management System (다중 IoT 센서 기반 실험실 관리 시스템)

  • Lee, Jongwon;Jeong, Daejin;Kang, Inshik;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.309-310
    • /
    • 2018
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF

Development of Integrated Monitoring Middleware System for 400km/h High Speed Railway Measurement Data (400km/h급 고속철도 계측데이터 통합 모니터링 미들웨어 시스템 개발)

  • Hwang, KyungHun;Na, JunSu;Song, ByungKeun;Yang, OKYul
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.61-68
    • /
    • 2013
  • Needs for a new technologies of infrastructure systems arose, following the development of next generation EMU(Electric Multiple Unit) train with maximum speed over 400km/h. For high-speed operation tests of the new EMU, a high-speed railway infrastructure test-bed was constructed in a 28km long section of the Honam High-speed Railway. Diverse sensors and monitoring system was installed for continuous monitoring of the railway. Due to such effort, further demands and needs of the integrated monitoring system was derived in a more comprehensive and long-term perspective.

A 3D Map Building Algorithm for a Mobile Robot Moving on the Slanted Surface (모바일 로봇의 경사 주행 시 3차원 지도작성 알고리즘)

  • Hwang, Yo-Seop;Han, Jong-Ho;Kim, Hyun-Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.243-250
    • /
    • 2012
  • This paper proposes a 3D map-building algorithm using one LRF (Laser Range Finder) while a mobile robot is navigating on the slanted surface. There are several researches on 3D map buildings using the LRF. However most of them are performing the map building only on the flat surface. While a mobile robot is moving on the slanted surface, the view angle of LRF is dynamically changing, which makes it very difficult to build the 3D map using encoder data. To cope with this dynamic change of the view angle in build 3D map, IMU and balance filters are fused to correct the unstable encoder data in this research. Through the real navigation experiments, it is verified that the fusion of multiple sensors are properly performed to correct the slope angle of the slanted surface. The effectiveness of the balance filter are also checked through the hill climbing navigations.

Adaptive Spatial Domain FB-Predictors for Bearing Estimation (입사각 추정을 위한 적응 공간영역 FB-예측기)

  • Lee, Won-Cheol;Park, Sang-Taick;Cha, Il-Whan;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.160-166
    • /
    • 1989
  • We propose adaptive algorithms computing the coefficients of spatial domain predictors. The method uses the LMS approach to compute the coefficients of the predictors realized by using the TDL(tapped-delay-line) and the ESC (escalator) structures. The predictors to be presented differ from the conventional ones in the sense that the relevant weights are updated such that the sum of the mean squared values of the forward and the backward prediction errors is minimized. Using the coefficients of such spatial domain predictors yields improved linear predictive spatial spectrums. The algorithms are applied to the problems of estimating incident angles of multiple narrow-band signals received by a linear array of sensors. Simulation results demonstrating the performances of the proposed methods are presented.

  • PDF

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.