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Adaptive Spatial Domain FB-Predictors for
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Abstract

We propose adaptive algorithms computing the coefficients of spatial domain predictors. The
method uses the LMS approach to compute the coefficients of the predictors realized by using the
TDL (tapped-delay-line) and the ESC (escalator) structures.

The predictors to be presented differ from the conventional ones in the sense that the relevant
weights are updated such that the sum of the mean squared values of the forward and the backward
prediction errors is minimized. Using the coefficients of such spatial domain predictors yields
improved linear predictive spatial spectrums.

The algorithms are applied to the problems of estimating incident angles of multiple narrow-
band signals receivea by a linear array of sensors. Simulation results demonstrating the
performances of the proposed methods are presented.

L. Introduction (1-3]. Various modern

temporal/spatial

Determining the incident angles of plane waves
received by an array of sensors is a classical pro-
blem in the areas of sonar, radar, and geophysics
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spectrum estimation techniques have been widely
studied due to the high resolution capabilities
[1-3].

The intent of this paper is to present adaptive
spatial domain prediction algorithms and to
apply the methods to the problems of estimating
direction-of-arrivals by computing the modified
linear predictive spatial spectrum given by [1].
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=1 N-1 . drn
H{f, 8) =:);' ";’amn exp{ —i2mc (Tn+ Tcosﬂ) s

m=*m (1b)
fc is the center frequency of the narrowband plane
waves received by a linear array of sensors, d is
the distance between neighbouring sensors, v is the
propagation velocity of the plane waves, T denotes
the sampling interval, m and n are the sensor and
the time indices, respectively, ag,, represents the
n-th coefficient of the filter taking the m-th sensor
output as its input, and m is the index of the
sensor whose output is to be estimated as a linear
combination of other sensor ouput signals. The
linear prediction method determines the incident
angles as 0=0i at which the spatial spectrum
estimate G(f o @) peaks.

Fig. 1. shows the block diagram of the spatial
domain predictor for m=0. From Fig. 1, the
prediction error eﬁ(k) can be expressed as

M~1 N-1
en (k) =Xak)— 2 2 &mnxm(k—n) (2)
m=0 n=0
m&m
Various approaches computing a_ _’s, which

mn™
minimize the statistically or time averaged value

of the squared prediction error, have been
presented[2,3].

It has been shown [1] that the choice of m
with smaller mean squared prediction error does
not imply a better spatial spectrum estimate and
the resolution and the bias of the linear predictive
spatial spectrum estimates for determining
incident angles of sinusoidal plane waves depend

| X :
P oy g 0 N - 1)

Fig.1. Block diagram of the spatial domain
predictor.
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on the choice m (i.e., the sensor output to be
predicted). In the temporal prediction problems,
the selection of m corresponds to the choice of
the sample to be predicted and past sample values
are usually used to predict the present sample to
make the system model causal. However, for a
spatially sampled signals, causality is not an
important issue, To overcome the problems of
selecting m, least square approaches minimizing
the time averaged sum of the squared values of the
forward(m=0) and the backward(m=M-1) predic-
tion errors[4,5]) were presented.

In this paper, various adaptive spatial domain
prediction algorithms performing forward and
backward predictions are presented. The predictor
structures to be considered are TDL(tapped-
delay-line) [7,8] and ESC (escalator){9,10]. The
relevant coefficients are updated using the LMS
(least-mean-square) approach such that minimiz-
ation of the sum of the mean squared forward
and backward predicition errors can be performed
simultaneously. Computer simulation results
comparing the performances of the proposed
methods and those of the corresponding spatial
domain predictors performing on directional
minimization are presented.

In Section II, the algorithms updating the
coefficients of the TDL and ESC structures
are presented. Computer simulation results for a
variety of situations are presented in Section IM.
Finally, conclusions will be made in Section IV,

II. Adaptive Spatial Domain Forward-
Backward Preditor

1. Adaptive TDL Forward-Backward Predictor

A schematic diagram of the spatial domain
FB (forward-backward) predictor with the TDL
structure is illustrated in Fig.2 where the linear
array consists of M sensors; and ef(k) and eb(k)
are the forward and the backward prediction
errors, respectively. From Fig.2, the spatial
prediction errors are given by

e (k) =x, (k) —A" X, (k) (3a)
and
ey (k) =xu_; (k—L+1)—B" X, (k) (3b)

where
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A= (Bie, 811" B1r_ 1" Bu_1.00 Buosr™ Buctio1)” An efficient method of computing the coeffi-
3c) cient in a recursive way is the LMS algorithm[7,8]
using the estimated gradient given by
B= [bw, byt <byii_1*"bu1.e hux.x"'bokl.L—l]T
3d . 2 ]
X ()= (6 () %1 (k—D)+oxy (k=LA 1)y (K- 9A M)
x1 (k—L+1)]7 (3e) =—2(e, (k) X,(k)+e, (k) Xy (k)] (6b)
X (k) = (u (k—L41) - xuz (k) -+ % (k—L+1)- where
% ()7 (30) )
e, (k) =x, (k) —A (k) X, (k) (6¢)
and “T” denotes matrix transpose. In the above
equations, L is the number of coefficients of the and
TDL filter for each sensor output. R
Assuming that the sensor output signals are es (k) =31 (k—L+1)—A (k) X, (k) (6d)

stationary; the additive noises at different sensors
are mutually uncorrelated and have the same
statistics; and the sensors have identical charac-

teristics and are equally spaced, we can show that
the optimum weight vectors A* and B* minimiz-
ing E([ef(k)] 2y and E([eb(k)] 2), respectively, are
the same, That is

A*=(R,)™ P,=B*=(R,)' P, (4a)

where

R,—E(X, ) X} (k)] =Rs=E (X, (k) Xt (k)]
(4b)

and

P,=E(x, &) X, (&) ] =Py=E (xy_s k—L+1)X, (k)
(4¢)

However, if the signal statistics in (4b) and (4c¢)
should be estimated from finite records of sensor
output signals by taking time average, then flf #*
Rb and Pf #* Pb. Thus the resulting coefficent
vectores A and Blare different. Similarly, com-
puting A and B using an adaptive algorithm with
finite time constant vyields different weight
vectors,

Now, let us consider the problem of minimiz-
ing the cost function C which is the sum of the
mean squared values of the forward and the
backward prediction errors under the constraint
that A=B. That is

minimizing C=E {[e,(k))*+ (e, (k))*} (5a)
subject to A=B (5b)

Using the estimated gradient, the LMS algorithm
can be expressed as

A+ =AW +u(—% &) (7a)
=A (k) +2ule, k) X, (k) +es (k) X, ()] (7b)

where A(k)is the weight vector estimated at
time k.

Fig.2. Schematic diagram of the spatial domain
forward-backward predictor with the TDL
structure for M=3 and L=2.

2. Adaptive ESC Forward-Backward Predictor

The ESC structure realizes the Gram-Schmidt
orthogonalization procedure[9] and has been
successfully applied to the problems of adaptive
beamforming[10] and temporal prediction[9].
Now, since the coefficients of the ESC structure
are computed such that mean squared values of
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local errors are minimized, applying the LMS
algorithm to compute the relevant weights yields
faster convergence speed and more stable steady
state with less mean squared error than the TDL
counterpart [9,10] .

Fig, 3(b) shows the schematic diagram of the
spatial domain forward-backward predictor with
the ESC structure, the forward part of which is
shown in Fig. 3(a) [9,10]. In the remaining
discussions, by (k) and fy(k) represent the
prediction errors and ESC coefficients, whose
forward counterparts are e, (k) and agy(k),
respectively, Due to the complexities of express-
ing the equations relevant to the ESC structure,
let us consider e,; (k) of the forward predictor and
the corresponding intermediate signal by (K) of
the backward predictor. From Fig.3. they can be
expressed as

en (k) =e,, (k) —as e k) (8a)
and
bn (k) =bu (k) _ﬂn bn (k) (8b)

Now, as for the case of the previously discu-
ssed adaptive TDL foward-backward predictor, the
ESC coefficient minimizing the sum of the mean
squared values of the forward and the backward
errors can be computed by letting ayn =y and using
the LMS approach given by

ay (k+1) =as k) + 1411 (k) [exl (k) en (k) +

bay (k) by (k) ) (%)
where
i (k) = (1—8) / afy (k) (9b)
and

A0 =geh =D+ LB [ e, o+

{bi ()} 1) (9c)

II. Simulation Results

To demonstrate the performances of the pro-
posed adaptive spatial domain FB-prediction
algorithms for the problems of bearing estimation,
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Fig.3. Schematic diagram of the spatial domain
(a) forward
(b) forward-backward predictor with the
ESC structure for M=3 and L=2.

the sensor output signals x,(k), i=0, 1,... 9 are
generated by adding mutually uncorrelated zero
mean white Gaussian random data n, (k). That is

Xy (k) =8 (k_Du) +s: (k-Du) +ny (k)

i=0,1,---9 (10a)
where
Du=idcoss
n=i-, cos b, (10b)
. d
Dy=i 7 cos b, (10c)

and the signals S, (k) and S, (k) were obtained by
processing white Gaussian random sequences
through a second order Butterworth band-pass
filter with the lower and upper cutoff frequencies
of 8 Hz and 17 Hz, (i.e., fc=12,5Hz) respectively
at the sampling rate of 300Hz. The number of
time samples of each sensor output to realize the
spatial domain predictors with the TDL and ESC
structures are 15 and 8, respectively; the con-
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vergence parameter u in (7b) and the smoothing
parameters § are 0.9999 and 0.95, respectively.
These parameters were chosen after intensive
simulations. The incident angles of the narrow-
band signals were 3° and +3° for the case-1 and
—~10%and +10° for the case-2. Different choice
of the reference sensor output (which is to be
spatially predicted as a weighted sum of other
sensor output signals) does not make any
difference due to the geometrical symmetry of
the two signals s, (k) and s,(k), when only one
directional (i.e., forward or bakward) prediction is
performed. Forward or backward prediction
algorithms for the TDL and ESC structures com-
pute the relevant coefficients using the LMS
approach which can be obtained by omitting
ep(k) Xp(k), by, (K)byy (K), and (by; (K))? in (7b),
(9a), and (9¢), respectively.

Simulation results in Fig.4-Fig.7 display the
spatial spectrums computed by using (a) FITDL
(forward TDL), (b) FBTDL (foward and back-
ward TDL), (¢) FESC( foward ESC), and (d)
FBESC(forward and backward ESC) spatial dom-
ain predictors, These results were obtained by
displaying 10 independent normalized spectr-
ums such that consistencies of the algorithms can
be examined.

SNR’s and incident angles for the simulations are
summarized in Table 1.

3
N
[ col
Ty
(b) FBTDL

°
AL [

(c) FESC (d) FBESC

Fig4. Linear predictive spatial spectrums for

SNR=10dB and §; =%10°.

(a) FTDL ~ (b) FBTIDL

W

e I;N o {peG)
(c) FESC (d) FBESC

Fig.5. Linear predictive spatial spectrums for
SNR=10dB and 6 =43°.
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Fig.6. Linear predictive spatial spectrums for
SNR=0dB and §; =+10°.

From the results in Fig.4-Fig.7, we can observe
that higher resolution (separability of two closely
spaced sigrals) can be obtained by minimizing the
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(c) FESC

(d) FBESC

Fig.7. Linear predictive spatial spectrums for
SNR=0dB and §; =%3°.

Table 1. SNR’s and incident angles for the

simulations.
Fig.4 | Fig.5 | Fig.6 | Fig.7
SNR (dB) 10dB | 10dB 0dB 0dB
Incident Angles +10° | £3° +10° | £3°

forward and backward prediction errors simult-
aneously; more consistent linear predictive spatial
spectrums are obtained by using the ESC realiz-
ation; and the spurious spectral estimates of the
FTDL and the FBTDL may result in incorrect
bearing estimates when the angles at which
dominant peaks occur are selected as the incident
angles.

IV. Concluding Remarks

Adaptive spatial domain prediction algorithms
minimizing the sum of the mean squared value of
the forward and the backward prediction errors
are presented. The predictors were realized using
the TDL and the ESC structures. The algorithms
were applied to the signals received by a linear
array of equally spaced sensors and linear predic-
tive spatial spectrums were computed using the
resulting coefficients.

Spatial Domain FB-Predictors for Bearing Estimation
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Computer simulation results indicate that
simultaneous minimization of the forward and the
backward spatial prediction errors yields spatial
spectrums with higher resolution and less bias
than the case of one directional minimization.
Also, it has been observed that more consistent
spectrum estimates can be obtained using the ESC
structure,
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