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힐버트-황 변환에 통한 Hand Accelerometer 

데이터의 핵심 패턴 추출

Applying Hilbert-Huang Transform to Extract Essential Patterns from 
Hand Accelerometer Data

최병석*, 서정열**

Byeongseog Choe*, Jung-Yul Suh**

요  약  Hand Accelerometer는 인간신체 운동 패턴을 실시간으로 파악하는데 널리 사용되고 있다. 그러므로 행동 유

형을 정확하게 파악하는 것은 아주 중요하다. 이 과정에서 각 행동유형의 형태를 미리 정확하게 파악하는 것이 중요하

다. 인간의 신체 행동은 센서를 통해 수집된 시계열 데이터로 표현된다. 이 데이터는 비안정적, 비선형적 성격을 가지

고 있다. 그래서 이런 성격의 데이터의 유형을 효율적으로 추출하는 방법을 찾는 것은 매우 중요하다. 힐버트-황 변환

은 비안정적 비선형적 요소를 시계열데이터에서 효율적으로 추출하는 방법이다. 이 방법을 위의 시계열 데이터에 적용

한 결과 핵심패턴이 성공적으로 추출되었다. 

Abstract  Hand Accelerometers are widely used to detect human motion patterns in real-time. It is essential to 
reliably identify which type of activity is performed by human subjects. This rests on having accurate template of 
each activity. Many human activities are represented as a set of multiple time-series data from such sensors, which 
are mostly non-stationary and non-linear in nature. This requires a method which can effectively extract patterns 
from non-stationary and non-linear data. To achieve such a goal, we propose the method to apply Hilbert-Huang 
Transform which is known to be an effective way of extracting non-stationary and non-linear components from 
time-series data. It is applied on samples of accelerometer data to determine its effectiveness.

Key Words : Hilbert-Huang Transformation, Accelerometer, Hand Motion

I. Introduction

Many new software of today require real-time 

monitoring of human activity to perform their 

task[16,17,19,20,21,22]. Sensors are attached to a human 

subject. They send streams of real-time time-series 

data for analysis in order for computer programs to 

formulate a proper response. Of great importance is to 

figure out what kind of activity a human subject is 

engaged in based on time-series data the computer is 

receiving [21,22,23]. Each activity shows distinctive 

pattern. It is necessary to find essential temporal 

pattern of each activity. Noisy extraneous parts of 

time-series needs to be removed. These are usually 
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occur on short time scale. By removing it, we can 

arrive at a pattern on proper time scale which can 

show essential characteristic of a given activity. The 

trouble is that the time-series data are mostly 

non-stationary and non-linear, and decomposing 

time-series data into components of predetermined set 

of frequency(period) could lead to inaccurate result. A 

method which perform decomposition into 

non-stationary and non-linear components of various 

time-scale is needed. Hilbert-Huang Transform (HHT) 

is ideally suited to performing such a transform. 

Time-series data can be broken down into components 

of multiple time scale, and choose a component on a 

proper time scale [11,12]. 

Time-series usually contains some type of 

fluctuation over time, which appears to occur at certain 

frequencies. Unfortunately, it rarely has precise periods. 

In addition, its perceived frequency could change over 

time. Human physical activities are no exception. 

Human hand motion while performing certain activities 

such as walking, eating a particular type of food, or 

brushing teeth all show contains oscillatory pattern 

with dynamically changing frequency and amplitude. 

Fast Fourier Transform (FFT) and Wavelet 

Transform have wide-spread application in many fields 

[8,9,15]. While they can be effective in solving certain 

problems, they do have some limitation. They are 

essentially static in that they start with predetermined 

basis of frequencies. In case of FFT,   time-series is 

represented as a static periodic function over the entire 

range of interest. To remedy this limitation, Windowed 

FFT was introduced with varying level of success. Still 

it is not suitable for representing non-linear and 

non-stationary time-series.

Wavelet Transform is designed to tackle this 

problem. It can produce three dimensional charts which 

can show change of frequency amplitude distribution 

over time. However, it still requires the use of 

predetermined basis. Wavelet Transform can handle 

non-stationary time-series but not non-linear one.  In 

contrast, HHT has adaptive basis. The basis is not 

predetermined. It is derived from the data while HHT 

is performed. It is especially effective in catching 

instantaneous frequencies and amplitudes [8,9].It is 

well-suited to identifying profiles of aforementioned 

human physical activities.

Previously, HHT has been applied to a wide range 

of problems with great success. It is used for analyzing 

heart beats or EEG signals while a subject is 

performing a particular cognitive task [23].It is applied 

to analyze wave signals propagating through structures 

such as vibration and detect anomalies such as cracks 

[18]. Image processing is another area of application in 

which it was used for filtering and feature detection 

[24].On a more macro scale, it has been applied to 

extracting periodic modes of epidemic outbreak 

time-series, and analyzing time-series data from 

weekly mortgage rates [25,26]. Another area where 

HHT has been extensively used is structural 

engineering [18].  While they all employed HHT, the 

manner of application may vary. In some cases, it is 

used to remove noisy components, usually signals in 

high frequency range [16]. In other cases, it is used to 

identify particular pattern which can characterize an 

onset of significant event such as heart attacks or 

structural failure [17,18].

A prior research on the application of HHT to 

analyzing human hand motion is the application of 

HHT to aiding minimally invasive surgery. The 

procedure requires surgeons to manipulate specialized 

tools in uncomfortable posture for extended duration. 

Over time, it will introduce hand muscle fatigue, 

generating hand-tremors which will affect accuracy of 

the procedure. Computer software is attached to 

analyze signals from hand motions. Then it identifies 

the high frequency components which are the result of 

hand tremor, which are filtered out and the resulting 

signal, now with hand-tremor removed, is sent to a 

slave manipulator inside a body of patient undergoing 

surgery. This is a way to self-correct signals so that 

the surgery maintains its accuracy.

In this paper, we used hand motion data from tri-axial 
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accelerometer and apply Empirical Mode Decomposition 

to them. It will produce components on different time 

scale. 

We will analyze which ones can be suitable for 

identifying a particular type of activity.  

II. Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) ([10], [11],[12], 

[13], [14]) is a method which is superior to any 

comparable techniques when it comes to 

non-stationary and non-linear time-series data. It first 

split the original time-series into multiple oscillatory 

components, which are called Intrinsic Mode Functions 

(IMF.) This process is called Empirical Mode 

Decomposition (EMD.) This is essentially a process of 

decomposing time-series data into components in 

separate frequency bands. The bands are not static but 

dynamic. Furthermore, it can show change of 

instantaneous frequencies. It can catch intra-wave 

frequency modulation, which other techniques like FFT 

or Wavelet Transform tend to destroy. Highly complex 

non-linear systems exhibit such a pattern. HHT is a 

proper tool to analyze data from such a system.

As has been mentioned in the previous section, the 

basis of HHT is not determined in advance. It will be 

derived through the process of Empirical Mode 

Decomposition(EMD.) EMD is essentially an iterative 

process which isolates components in different 

time-scales in stages. Each stage employs a sifting 

process which is to produce proper oscillatory 

component without containing components which is on 

larger time scale. Each component isolated via this 

process is an Intrinsic Mode Function. IMF is isolated 

starting with the highest frequency (smallest 

time-scale.) Isolated IMF is subtracted from the 

current time-series, producing new time-series with 

lower frequencies. This process continues, producing 

IMF's of lower and lower frequency (larger time-scale) 

until a terminating condition is met, at which point 

EMD ends.

표 1. Empirical Mode Decomposition 알고리즘

Table 1. Empirical Mode Decomposition Algorithm

그림 1. 극대 극소 값의 포락선을 이용한 평균곡선의 도출

Fig. 1. Deriving a Mean Curve from Envelope Curves

       of Local Maxima and Minima  

A rough description of Hilbert-Huang Transform is 

shown in Table 1 ([12].)  As a result, 



Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data

- 182 -

그림 2. (a) 샘플 곡선 f(x) (b) f(x)의 프리에 변환결과(파워 스펙트럼) (c) EMD를 통해 도출된 IMF곡선들 (d) 각 IMF곡선

에 대한 푸리에변환 결과(파워 스펙트럼)

Fig. 2 (a) a Sample curve f(x) (b) Power Spectrum of f(x) (c) IMF curves derived from f(x) via EMD (d) 

Power Spectrum of each IMF curve.

 






  is now decomposed into  IMF’s. Figure 1 

shows how two envelope curves, 
, 

and its mean 

curve 
  are derived. The sample result of EMD is 

shown in Figure 2. 

Figure 2(a),(b) shows a sample curve(top) and its 

power spectrum(bottom). EMD produces IMF’s in 

Figure 2(c). Figure 2(d) shows power spectrum of each 

IMF. Each IMF has a power spectrum concentrated 

around a single major frequency unlike the original 

curve with more spread-out power spectrum. Original 

time-series is decomposed into IMF's in different 

frequency bands, which are not known in advance but 

rather found during EMD. Since each IMF is not a 

simple periodic curve, its power spectrum can be 

complicated. Some have sharp peaks clearly showing 

dominant frequencies, while others have more 

spread-out distribution. Since EMD relies on envelope 

curve of peaks, it does not perform well if there are no 

available peaks. IMF's on either end of time-series 

tend to be inaccurate, frequently showing significant 

deviation from original time-series data. So segments 

of IMF on both ends should be discarded.

III. Experiments

We used data from Activities of Daily Living 

(ADLs) Recognition at UCI Machine Learning 

Repository. Tri-axial accelerometers are attached to a 

wrist of human subjects [21,22]. Figure 3 shows one 
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(a)

(b)

그림 4. (a) 칫솔질을 할 때 움직임을 기록한 3축 가속도계의 x-축 측정치 (b) 측정치에 EMD를 적용해서 얻은 8개의 IMF곡선(왼쪽위

에서 아래로 다음에 오른 쪽 위에서 아랫방향으로 보다 완만한 IMF가 배열되어 있다.)

Fig. 4. (a) X-axis values from an tri-axial accelerometer during “Brushing Teeth” activity (b) 8 IMF curves derived

via EMD. IMF’s are arranged according to their time-scale (top-left is the shortest, and the bottom-right

is the longest.) 

그림 3. 3축 가속도계 (손목에 장착)

Fig. 3. Tri-axial Accelerometer(attached to a wrist)

type of tri-axial accelerometer. The subjects are asked 

to do a variety of activities including eating, brushing 

teeth, or lying down on the bed. The accelerometer 

records movement in three different directions:  

- x axis: pointing toward the hand

- y axis: pointing toward the left

- z axis: perpendicular to the plane of the hand

Three sets of time series data are generated for each 

trial. Some of collected time series data were chosen. 

For time-series corresponding to each axis, HHT was 

applied and IMF’s were derived via EMD. Each IMF 

represent pattern on a particular time-scale. IMF’s are 

subtracted from original time-series in succession, 

removing component of shorter time-scale(fast 

changing component) one at a time, until the resulting 

time-series data turns out to be the one which best 

represents essential pattern of original time-series data. 

It is a process of choosing a right time scale where 

essential pattern can be found. To put it formally, we 

are trying to find the best   where 

  ⋯   where   represents 

original time-series.
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그림 5. 칫솔질운동의 x-축 측정치의 LIMF 곡선

Fig. 5. LIMF Curves from x-axis Values of “Brushing Teeth” Activity
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그림 6. 모든 축의 값의 4번째(위), 5번째(아래) LIMF 곡선(LIMF4, LIMF5): 검은색(x-축), 빨간색(y-축), 파란색(z-축)

Fig. 6. 4th (top) and 5th (bottom) LIMF’s (LIMF4, LIMF5) for each axis: red(x-axis), black(y-axis), 

blue(z-axis)

IV. Result

Figure 4 shows the result of Empirical Mode 

Decomposition (EMD) performed on time-series data 

from x-axis measurement of “brushing teeth” activity. 

The top graph is the original time-series data and 8 

IMF’s are shown. As can be seen here, time-series is 

broken into multiple components of varying time-scale. 

These are pieces of original time-series. Since we are 

trying to find overall pattern which can represent the 

time-series best, an individual piece may be not a 

suitable candidate. Instead we are peeling off each IMF 

one at a time starting with . This would remove 

noisy or non-essential components from the 

time-series. Conventional filtering can be used for the 

same purpose, but it may not be as effective because 

it lacks a kind of good adaptive feature HHT can 

provide. LIMF’s obtained by removing IMF one by one 

are shown in Figure 5. Starting  from the top which is 

the original time-series, the figure shows the result 

Figure 5 of removing each IMF one at a time. After 

performing the removal process 4 or 5 times, we have 

the result which may best capture overall pattern of the 

original time-series. If we proceed further, the resulting 

time-series is on the time-scale too long to contain 

useful information. Performing the same operation for 

time-series data from y,z-axis, we have a result shown 

in Figure 6. It has   and   for all three axis.  

  may have more details but too many peaks and 

valleys.

To capture the overall pattern   may be more 

suitable. The same operation can be done for other 

data. The rule of thumb to pick the right   is to 

find a number by dividing the number of LIMF’s by 2 

and pick LIMF corresponding to the number. That is, 

pick 




 where  ⌊⌋or⌈⌉. 

Figure 7,8,9,10 shows additional result for various 

activities. Most of LIMF’s shown here capture essential 

pattern of activities, except brushing teeth. Its high 

frequency IMF’s do reflect significant pattern of 

activities, and it may not have to be discarded. This 

requires further analysis on Instantaneous 

Frequency(IF) of the activity.



Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data

- 186 -

Fig. 7. Eating Meat-1  (a) time-series data from x,y,z direction (x: black, y: red, z:blue) 

        (b) 5th LIMF (c) 6th LIMF

(b)

(a)

(c)

그림 8. 육류 섭취시 움직임-2 (a) x,y,z 축 방향 시계열 데이터 측정치(x:검은 색, y:빨간 색, z:파란 색) (b) 5번째 

LIMF (c) 6번째 LIMF

Fig. 8. Eating Meat-2  (a) time-series data from x,y,z direction (x: black, y: red, z:blue) (b) 5th LIMF 

(c) 6th LIMF

(b)

(a)

(c)
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그림 9. 침대에 누을 때 움직임 (a) x,y,z 축 방향 시계열 데이터 측정치(x:검은 색, y:빨간 색, z:파란 색) (b) 2번째 

LIMF (c) 3번째 LIMF

Fig. 9. Lying Down to Bed (a) time-series data from x,y,z direction (x: black, y: red, z:blue) (b) 2nd 

LIMF (c) 3rd  LIMF

(b)

(a)

(c)

그림 10. 칫솔질할 때 움직임 (a) x,y,z 축 방향 시계열 데이터 측정치(x:검은 색, y:빨간 색, z:파란 색) (b) 4번째 

LIMF (c) 5번째 LIMF

Fig. 10. Brushing Teeth (a) time-series data from x,y,z direction (x: black, y: red, z:blue) (b) 4th LIMF 

(c) 5th LIMF

(b)

 (a)

(c)
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V. Conclusion

The application of HHT to derive a series of LIMF’s 

to find the essential pattern which best captures the 

essential feature of time-series has been investigated. 

It turns out that this method is good at capturing 

non-stationary and non-linear feature of time-series. 

The resulting time-series can be used as a good 

template for identifying the type of activities a human 

subject is engaged in. However, depending on the 

activities, we cannot pinpoint the right IMF to 

characterize the type of activity. For example, brushing 

teeth contains significant component of high frequency 

activity and it is not noise. It constitutes one of 

important features. For this paper, we only used IMF’s 

derived via EMD. We left out Instantaneous Frequency 

(IF) and Instantaneous Amplitude (IA,) which make the 

other half of HHT.

To address the problem with activity like brushing 

teeth, we need to use IF and IA plot. HHT can be used 

in a nested fashion. EMD can be applied to IF and IA 

plot, generating new IMF’s for each, which can be used 

to address the problem, a topic our future research 

could explore.
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