• Title/Summary/Keyword: Multiple sensors

Search Result 724, Processing Time 0.025 seconds

Biomimetic approach object detection sensors using multiple imaging (다중 영상을 이용한 생체모방형 물체 접근 감지 센서)

  • Choi, Myoung Hoon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Lee, Dong Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.91-93
    • /
    • 2016
  • From the 2-D image extracting three-dimensional information as the latter is in the bilateral sibeop using two camera method and when using a monocular camera as a very important step generally as "stereo vision". There in today's CCTV and automatic object tracking system used in many medium much to know the site conditions or work developed more clearly by using a stereo camera that mimics the eyes of humans to maximize the efficiency of avoidance / control start and multiple jobs can do. Object tracking system of the existing 2D image will have but can not recognize the distance to the transition could not be recognized by the observer display using a parallax of a stereo image, and the object can be more effectively controlled.

  • PDF

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

Location Estimation for Multiple Targets Using Tree Search Algorithms under Cooperative Surveillance of Multiple Robots (다중로봇 협업감시 시스템에서 트리 탐색 기법을 활용한 다중표적 위치 좌표 추정)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.782-791
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots. In order to match up targets with measured azimuths, we apply the maximum likelihood (ML), depth-first, and breadth-first tree search algorithms, in which we use the measured azimuths and the number of pixels on IR screen for pruning branches and selecting candidates. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the probability of missing target, mean of the number of calculating nodes, and mean error of the estimated coordinates of the proposed algorithms.

Model Updating Method Based on Mode Decoupling Controller with Incomplete Modal Data (불완전 모달 정보를 이용한 모드 분리 제어기 기반의 모델 개선법)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.963-966
    • /
    • 2005
  • Model updating method is known to the area to correct finite element models by the results of the experimental modal analysis. Most common methods in model updating depend on a parametric model of the structure. In this case, the number of parameters is normally smaller than that of modal data obtained from an experiment. In order to overcome this limitation, many researchers are trying to get modal data as many as possible to date. 1 want to name this method multiple modified-system generation method. These Methods consist of direct system modification method and feedback controller method. The direct system modification Is to add a mass or stiffness on the original structure or perturb the boundary conditions. The feedback controller method is to make the closed food system with sensor and actuator so as to get the closed loop modal data. In this paper, we need to focus on the feedback controller method because of its simplicity. Several methods related the feedback controller methods are virtual passive controller (VPC) sensitivity enhancement controller (SEC) and mode decoupling controller (MDC). Among them, we will apply MDC to the model updating problem. MDC has various advantages compared with other controllers, such as VPC and SEC. To begin with, only the target mode can be changed without changing modal property of non-target modes. In addition, it is possible to fix any modes if the number of sensors is equal to that of the system modes. Finally, the required control power to achieve desired change of target mode is always lower than those of other methods such as VPC. However, MDC can make the closed loop system unstable when using incomplete modal data. So we need to take action to avoid undesirable instability from incomplete modal data. In this paper, we address the method to design the unique and robust MDD obtained from incomplete modal data. The associated simulation will be Incorporated to demonstrate the usefulness of this method.

  • PDF

An Efficient Multiple Tree-Based Routing Scheme in Faulty Wireless Sensor Networks (결함이 발생하는 센서 네트워크 환경에서 다중 트리 기반 라우팅 프로토콜)

  • Park, Jun-Ho;Seong, Dong-Ook;Yeo, Myung-Ho;Kim, Hak-Sin;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Wireless sensor networks (WSN) are widely used in many applications. WSN acquires the data of surrounding environments with sensors attached to each node. It is important to design sensor networks that can communicate energy-efficiently as well as to get sensor readings with high accuracy. In this paper, we propose a novel routing scheme that assures high accuracy and significantly reduces data transmission costs in WSN with faults. First, we organize a number of network topologies randomly for routing sensor readings to the base station. Because every sensor node is connected each other with a single path, redundant transmissions are not incurred. It can reduce unnecessary transmissions and guarantee final sensor readings with high accuracy. To show the superiority of our scheme, we compare it with an existing multi-path routing scheme. In the result, our scheme has similar accuracy as the existing scheme and reduces unnecessary data transmissions by about 70% over the existing technique.

Dempster-Shafer Fusion of Multisensor Imagery Using Gaussian Mass Function (Gaussian분포의 질량함수를 사용하는 Dempster-Shafer영상융합)

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.419-425
    • /
    • 2004
  • This study has proposed a data fusion method based on the Dempster-Shafer evidence theory The Dempster-Shafer fusion uses mass functions obtained under the assumption of class-independent Gaussian assumption. In the Dempster-Shafer approach, uncertainty is represented by 'belief interval' equal to the difference between the values of 'belief' function and 'plausibility' function which measure imprecision and uncertainty By utilizing the Dempster-Shafer scheme to fuse the data from multiple sensors, the results of classification can be improved. It can make the users consider the regions with mixed classes in a training process. In most practices, it is hard to find the regions with a pure class. In this study, the proposed method has applied to the KOMPSAT-EOC panchromatic image and LANDSAT ETM+ NDVI data acquired over Yongin/Nuengpyung. area of Kyunggi-do. The results show that it has potential of effective data fusion for multiple sensor imagery.

Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter (Kalman Filter 복수 적용을 통한 Backprojection 기반 FMCW-SAR의 영상복원 품질평가)

  • Song, Juyoung;Kim, Duk-jin;Hwang, Ji-hwan;An, Sangho;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1349-1359
    • /
    • 2021
  • Acquisition of precise position and velocity information of GNSS-INS (Global Navigation Satellite System; Inertial Navigation System) sensors in obtaining SAR SLC (Single Look Complex) images from raw data using BPA (Backprojection Algorithm) was regarded decisive. Several studies on BPA were accompanied by Kalman Filter for sensor noise oppression, but often implemented once where insufficient information was given to determine whether the filtering was effectively applied. Multiple operation of Kalman Filter on GNSS-INS sensor was presented in order to assess the effective order of sensor noise calibration. FMCW (Frequency Modulated Continuous Wave)-SAR raw data was collected from twice airborne experiments whose GNSS-INS information was practically and repeatedly filtered via Kalman Filter. It was driven that the FMCW-SAR raw data with diverse path information could derive different order of Kalman Filter with optimum operation of BPA image restoration.

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Development of a Monitoring System Based on the Cooperation of Multiple Sensors on SenWeaver Platform (센위버 플랫폼 기반의 다중센서 협업을 이용한 모니터링 시스템 개발)

  • Kwon, Cha-Uk;Cha, Kyung-Ae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • This study proposes a monitoring system that effectively watches surroundings by cooperating the various sensor information including image information on a sensor network system. The monitoring system proposed in this paper is developed to watch certain intruders to the internal spaces through the interested region for exceptional time by installing cameras, PIR(Pyroelectric Infrared Ray) sensor and body detectors in such interested regions. Moreover the monitering system is implemented based on the SenWeaver plateform which is a integrated development tools for building wireless sensor network system. In the results of the test that was applied to a practically experimental environment by implementing some interfaces for the proposed system, it was considered that it is possible to watch surroundings effectively using the image information obtained from cameras and multiple sensor information acquisited from sensor nodes.

Efficient Methods of Tactical Situation Display for Tactical Analysis Tool of P-3C Maritime Patrol Aircraft (P-3C 해상초계기 전술분석도구를 위한 전술 상황표시기의 효율적 전시 기법)

  • Byoung-Kug Kim;Yonghoon Cha;Sung-Hwa Hong;Jaeho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.495-501
    • /
    • 2023
  • P-3C/K aircraft for maritime patrols that Republic of Korea Navy is using, is equipped with a variety of sensors and communication devices. Collected data from the aircraft is managed as tactical information by flight operators and stored. When the flight mission is completed, this information is transferred to tactical support center on the ground and played back or used for follow-up work through a analysis tool. During a flight mission, there are tens of thousands of detection objects within an hour in KADIZ (Korea air defense identification zone). In contrast, in TSD (tactical situation display), which displays a map when using the analysis tool, all detected objects are expressed as symbols. The increase in display symbols has a significant impact on the TSD image updating and consequently interferes with the smooth operation of operators. In this paper, we propose applying multiple threads and multiple layers to improve the performance of existing TSD. And the performance improvement is proven through the execution results.