• 제목/요약/키워드: Multiple object tracking

검색결과 206건 처리시간 0.037초

A New Approach for Multiple Object Tracking ? Discrete Event based Multiple Object Tracking (DEMOT)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1134-1139
    • /
    • 2003
  • Tracking is a fundamental technique which is able to be applied to gesture recognition, visual surveillance, tangible agent and so forth. Especially, multiple object tracking has been extensively studied in recent years in order to perform many and more complicated tasks. In this paper, we propose a new approach of multiple object tracking which is based on discrete event. We call this system the DEMOT (Discrete Event based Multiple Object Tracking). This approach is based on the fact that a multiple object tracking can have just four situations - initiation, continuation, termination, and overlapping. Here, initiation, continuation, termination, and overlapping constitute a primary event set and this is based on the change of the number of extracted objects between a previous frame and a current frame. This system reduces computational costs and holds down the identity of all targets. We make experiments for this system with respect to the number of targets, each event, and processing period. We describe experimental results that show the successful multiple object tracking by using our approach.

  • PDF

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제20권6호
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

SIFT와 다중측면히스토그램을 이용한 다중물체추적 (Multiple Object Tracking Using SIFT and Multi-Lateral Histogram)

  • 전정수;문용호;하석운
    • 대한임베디드공학회논문지
    • /
    • 제9권1호
    • /
    • pp.53-59
    • /
    • 2014
  • In multiple object tracking, accurate detection for each of objects that appear sequentially and effective tracking in complicated cases that they are overlapped with each other are very important. In this paper, we propose a multiple object tracking system that has a concrete detection and tracking characteristics by using multi-lateral histogram and SIFT feature extraction algorithm. Especially, by limiting the matching area to object's inside and by utilizing the location informations in the keypoint matching process of SIFT algorithm, we advanced the tracking performance for multiple objects. Based on the experimental results, we found that the proposed tracking system has a robust tracking operation in the complicated environments that multiple objects are frequently overlapped in various of directions.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

동적 윤곽 모델을 이용한 이동 물체 추적 (Moving Object Tracking Using Active Contour Model)

  • 한규범;백윤수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적 (Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter)

  • 김형복;고광은;강진식;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.106-111
    • /
    • 2011
  • 영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.

다중 카메라를 이용한 실시간 객체 추적 방법 (Real Time Object Tracking Method using Multiple Cameras)

  • 장인태;김동우;송영준;권혁봉;안재형
    • 한국산업정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.51-59
    • /
    • 2012
  • 최근 보안 감시 분야에서 영상처리를 이용한 객체 추적에 관한 연구가 활발히 이루어지고 있다. 기존 여러 대의 카메라를 이용한 보안 감시 시스템은 각각 독립적으로 운영되었다. 따라서 추적 객체가 다른 카메라의 감시영역으로 이동 시 계속해서 추적이 어려웠다. 이 문제를 해결하기 위해 본 논문은 다중 카메라에서 객체의 이동방향에 따라 자동으로 카메라의 제어권을 변경하는 방법을 제안한다. 제안방법은 객체를 검출하고 객체의 색상 정보와 방향 정보로 객체를 추적한다. 색상 정보는 hue를 이용하고 방향 정보는 광류를 이용하여 획득한다. 이때 광류는 전체 영상이 아닌 객체가 검출된 영역에만 적용하여 계산량을 줄여 실시간 추적이 가능하게 한다. 또한, 자동으로 객체를 추적함으로써 기존 카메라를 이용한 보안 감시 시스템의 불편함을 해결할 수 있다.

A Fast Snake Algorithm for Tracking Multiple Objects

  • Fang, Hua;Kim, Jeong-Woo;Jang, Jong-Whan
    • Journal of Information Processing Systems
    • /
    • 제7권3호
    • /
    • pp.519-530
    • /
    • 2011
  • A Snake is an active contour for representing object contours. Traditional snake algorithms are often used to represent the contour of a single object. However, if there is more than one object in the image, the snake model must be adaptive to determine the corresponding contour of each object. Also, the previous initialized snake contours risk getting the wrong results when tracking multiple objects in successive frames due to the weak topology changes. To overcome this problem, in this paper, we present a new snake method for efficiently tracking contours of multiple objects. Our proposed algorithm can provide a straightforward approach for snake contour rapid splitting and connection, which usually cannot be gracefully handled by traditional snakes. Experimental results of various test sequence images with multiple objects have shown good performance, which proves that the proposed method is both effective and accurate.

환경변화에 강인한 다중 객체 탐지 및 추적 시스템 (Multiple Object Detection and Tracking System robust to various Environment)

  • 이우주;이배호
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.88-94
    • /
    • 2009
  • 본 논문에서는 보안 및 감시 시스템 분야에 적용할 수 있는 실시간 객체 탐지 및 추적 알고리듬을 제안한다. 구현된 시스템은 객체 탐지 단계, 객체 추적 단계로 구성되었다. 객체탐지에서는 정화한 객체의 움직임 검출을 위한 향상된 검출 방법인 적응배경 차분법과 적응적 블록 기반 모델을 제안한다. 객체추적에서는 칼만 필터에 기반한 다중 물체 추적 시스템을 설계하였다. 실험결과 이동객체의 움직임을 추정할 수 있었고, 추적 과정에서도 다수의 객체를 잃어버리지 않고 정상적으로 추적할 수 있었다. 또한 원거리 탐지 및 추적에서 향상된 결과를 얻을 수 있었다.

컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적 (The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information)

  • 홍승범
    • 한국항공운항학회지
    • /
    • 제18권2호
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.