• Title/Summary/Keyword: Multiple hypergeometric functions

Search Result 17, Processing Time 0.018 seconds

Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17

  • Choi, Junesang;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.677-684
    • /
    • 2014
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at generalizing the following transformation formula for the Exton's triple hypergeometric series $X_{12}$ and $X_{17}$: $$(1+2z)^{-b}X_{17}\;\left(a,b,c_3;\;c_1,c_2,2c_3;\;x,{\frac{y}{1+2z}},{\frac{4z}{1+2z}}\right)\\{\hfill{53}}=X_{12}\;\left(a,b;\;c_1,c_2,c_3+{\frac{1}{2}};\;x,y,z^2\right).$$ The results are derived with the help of two general hypergeometric identities for the terminating $_2F_1(2)$ series which were very recently obtained by Kim et al. Four interesting results closely related to the Exton's transformation formula are also chosen, among ten, to be derived as special illustrative cases of our main findings. The results easily obtained in this paper are simple and (potentially) useful.

SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

  • KHAN, N.U.;USMAN, T.;GHAYASUDDIN, M.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.249-255
    • /
    • 2016
  • The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.

A NEW CLASS OF EULER TYPE INTEGRAL OPERATORS INVOLVING MULTIINDEX MITTAG-LEFFLER FUNCTION

  • Khan, Nabiullah;Ghayasuddin, Mohd.;Shadab, Mohd
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.691-700
    • /
    • 2018
  • The main object of the present research paper is to establish two (potentially) useful Euler type integrals involving multiindex Mittag-Leffler functions, which are expressed in terms of Wright hypergeometric functions. Some deductions of the main results are also indicated.

A REDUCIBILITY OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES F(3)[x, y, z]

  • Choi, Junesang;Wang, Xiaoxia;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.297-301
    • /
    • 2013
  • When certain general single or multiple hypergeometric functions were introduced, their reduction formulas have naturally been investigated. Here, in this paper, we aim at presenting a very interesting reduction formula for the Srivastava's triple hypergeometric function $F^{(3)}[x,y,z]$ by applying the so-called Beta integral method to the Henrici's triple product formula for hypergeometric series.

A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M.
    • Journal of the Korean Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1971
  • Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

  • PDF

CERTAIN INTEGRALS ASSOCIATED WITH GENERALIZED MITTAG-LEFFLER FUNCTION

  • Agarwal, Praveen;Choi, Junesang;Jain, Shilpi;Rashidi, Mohammad Mehdi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • The main objective of this paper is to establish certain unified integral formula involving the product of the generalized Mittag-Leffler type function $E^{({\gamma}_j),(l_j)}_{({\rho}_j),{\lambda}}[z_1,{\ldots},z_r]$ and the Srivastava's polynomials $S^m_n[x]$. We also show how the main result here is general by demonstrating some interesting special cases.