• 제목/요약/키워드: Multiple Target

Search Result 1,467, Processing Time 0.034 seconds

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

Acoustic Target Strength Analysis for Underwater Vehicles Covering Near Field Spherical Wave Source Originated Multiple Bounce Effects (근접장 구면파 소스의 다중 반사 효과를 고려한 수중함의 음향표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.196-209
    • /
    • 2010
  • For the analysis of Acoustic Target Strength(TS) that indicates the scattered acoustic intensity from the underwater vehicles, an analysis program that is applicable to scatterers insonified by spherical wave source in near field is developed. In this program, the Physical Optics(PO) method is embedded as a base component. To increase the accuracy of the program, multiple bounce effects based on Geometrical Optics(GO) method are applied. To implement multiple bounce effects, GO method is used together with PO method. In detail, GO method has a concern in the evaluation of the effective area, and PO method is involved in the calculation of Acoustic Target Strength for the final effective area that is evaluated by GO method. For the embodiment of near field spherical wave source originated multiple bounce effects, image source concept is implemented additively to the existing multiple bounce algorithm which assumes plane wave insonification. Various types of models are tested to evaluate the reliability of the developed program and finally, a submarine is analyzed as an arbitrary scatterer.

A study on data association based on multiple model for improving target tracking performance in maneuvering interval in bistatic sonar environments (양상태 소나를 운용하는 자함이 기동하는 구간에서 추적성능향상을 위한 다수모델기반의 자료결합기법 연구)

  • Park, Seung-Hyo;Song, Taek-Lyul;Lee, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • For the target tracking in cluttered environment using a bistatic sonar whose transmitter and receiver are separately positioned, it is necessary to use data association algorithm via applying a proper measurement modelling to the bistatic sonar. The measurements obtained from the interval of ownship's maneuver have an increased error due to uncertainty of the position of transmitter and receiver. Using the measurements from this interval results in poor target tracking performance. In this paper, an improved tracking performance for the proposed data association based multiple model algorithm is validated by a monte carlo simulation.

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.

Real-time small target detection method Using multiple filters and IPP Libraries in Infrared Images

  • Kim, Chul Joong;Kim, Jae Hyup;Jang, Kyung Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.21-28
    • /
    • 2016
  • In this paper, we propose a fast small target detection method using multiple filters, and describe system implementation using IPP libraries. To detect small targets in Infra-Red images, it is mandatory that you should apply a filter to eliminate a background and identify the target information. Moreover, by using a suitable algorithm for the environments and characteristics of the target, the filter must remove the background information while maintaining the target information as possible. For this reason, in the proposed method we have detected small targets by applying multi area(spatial) filters in a low luminous environment. In order to apply the multi spatial filters, the computation time can be increased exponentially in case of the sequential operation. To build this algorithm in real-time systems, we have applied IPP library to secure a software optimization and reduce the computation time. As a result of applying real environments, we have confirmed a detection rate more than 90%, also the computation time of the proposed algorithm have been improved about 90% than a typical sequential computation time.

Multiple Target DOA Tracking Algorithm Using Measurement Fusion (측정치 융합기법을 이용한 다중표적 방위각 추적 알고리즘)

  • 신창홍;류창수;이균경
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.493-496
    • /
    • 2003
  • Recently, Ryu et al. proposed a multiple target DOA tracking algorithm, which has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio. In this paper, a measurement fusion method is presented based on ML(Maximum Likelihood), and the new DOA tracking algorithm is proposed by incorporating the presented fusion method into Ryu's algorithm. The proposed algorithm has a better tracking performance than that of Ryu's algorithm, and it sustains the good features of Ryu's algorithm.

  • PDF

Strategies for Robust Design with Multiple Responses

  • Hwang Inkeuk;Chung Lakchae
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.28-46
    • /
    • 1997
  • This paper considers robust design strategies for off-line quality control, with the use of experimental design and response surface methodology, in situations where all products have multiple quality characteristics. These strategies can be developed using the desirability concept of desirability functions to determine the settings of the design factors, not only to get the average performances on target but also to minimize variability around the target values.

  • PDF

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Three Dimensional Target Volume Reconstruction from Multiple Projection Images (다중투사영상을 이용한 표적체적의 3차원 재구성)

  • 정광호;진호상;이형구;최보영;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • In the radiation treatment planning (RTP) process, especially for stereotactic radiosurgery (SRS), knowing the exact volume and shape and the precise position of a lesion is very important. Sometimes X-ray projection images, such as angiograms, become the best choice for lesion identification. However, while the exact target position can be acquired by bi-projection images, 3D target reconstruction from bi-projection images is considered to be impossible. The aim of this study was to reconstruct the 3D target volume from multiple projection images. It was assumed that we knew the exact target position in advance, and all processes were performed in Target Coordinates, where the origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. The Reconstruction Box was made up of voxels of 3D matrices. Projection images were transformed into 3D in this virtual box using a geometric back-projection method. The resolution and the accuracy of the reconstructed target volume were dependent on the target size. An algorithm was applied to an ellipsoid model and a horseshoe-shaped model. Projection images were created geometrically using C program language, and reconstruction was also performed using C program language and Matlab ver. 6(The Mathwork Inc., USA). For the ellipsoid model, the reconstructed volume was slightly overestimated, but the target shape and position proved to be correct. For the horseshoe-shaped model, reconstructed volume was somewhat different from the original target model, but there was a considerable improvement in determining the target volume.

  • PDF

Study on target erosion in rocking magnet sputtering system

  • Lee, Do-Sun;Kwon, Ui-Hui;Lee, Won-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.245-251
    • /
    • 2005
  • A high performance dual rocking magnet sputtering gun has been developed. The rocking magnet sputtering gun introduces full-face erosion by rapidly rocking the magnet in the region where the high plasma density is maintained. The newly developed dual rocking magnet sputtering gun whose target utilization was 77 percent achieved high performance in quality in the view of target utilization and target life-time comparing to the existing magnetron sputtering gun. The PIC-MCC target erosion simulation has been performed simultaneously. Comparing experimental target erosion profiles with simulated target erosion profiles, the simulation could estimate the tendency of the target erosion profiles but could not estimate an exact target erosion profile. If the simulation were improved more precisely, the cost reduction for the development of the multiple rocking magnet sputtering gun would be expected.