• Title/Summary/Keyword: Multiple Target

Search Result 1,467, Processing Time 0.027 seconds

Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories (동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석)

  • Kang, Min-Young;Lee, Bo-Ram;Kim, You-Hyun;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.

Research on improvement of target tracking performance of LM-IPDAF through improvement of clutter density estimation method (클러터밀도 추정 방법 개선을 통한 LM-IPDAF의 표적 추적 성능 향상 연구)

  • Yoo, In-Je;Park, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.99-110
    • /
    • 2017
  • Improving tracking performance by estimating the status of multiple targets using radar is important. In a clutter environment, a joint event occurs between the track and measurement in multiple target tracking using a tracking filter. As the number increases, the joint event increases exponentially. The problem to be considered when multiple target tracking filter design in such environments is that first, the tracking filter minimizes the rate of false track alarmsby eliminating the false track and quickly confirming the target track. The purpose is to increase the FTD performance. The second consideration is to improve the track maintenance performance by allocating each measurement to a track efficiently when an event occurs. Through two considerations, a single target tracking data association technique is extended to a multiple target tracking filter, and representative algorithms are JIPDAF and LM-IPDAF. In this study, a probabilistic evaluation of many hypotheses in the assignment of measurements was not performed, so that the computation amount does not increase nonlinearly according to the number of measurements and tracks, and the track existence probability based on the track density The LM-IPDAF algorithm was introduced. This paper also proposes a method to reduce the computational complexity by improving the clutter density estimation method for calculating the track existence probability of LM-IPDAF. The performance was verified by a comparison with the existing algorithm through simulation. As a result, it was possible to reduce the simulation processing time by approximately 20% while achieving equivalent performance on the position RMSE and Confirmed True Track.

Study on a Noble Methodology for the Automatic Decision of Optimal Launch Angle Sequence under Multi-Target Engagement (다수 표적 연속교전 상황에서의 최적 발사각 Sequence 결정 개념 연구)

  • Ryu, Sunmee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.133-146
    • /
    • 2016
  • To engage multiple missiles in single launcher against multiple targets, launcher system has to operate for optimized launch angle to each target sequentially. If the launch angle sequence is simply defined according to the target assignment order only, overall engagement time would be increased, and even in some engagement scenarios, it could be possible to miss some moving targets being out of proper engagement area. Therefore, the study on methodology for a real-time decision of optimized launch angle sequence is necessary. In this paper, the automatic decision model of launch angle sequence was suggested to minimize total engagement time by analyzing the simulation results of all engagement sequence set for multiple moving target scenario. Performance of proposed methodology for decision of optimal launch angle sequence was verified by comparing with the optimal or suboptimal sequence obtained from simulation results.

Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar (잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법)

  • Choi, Byungwoong;Kim, Kyubaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

Development of Target Signal Simulator for Multi-Beam Type FMCW Radar (다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발)

  • Lee, Seung-Youn;Choe, Tok-Son;Jung, Young-Hun;Lee, Seok-Jae;Yoon, Joo-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

Multiple Target DOA Tracking Algorithm With Measurement Fusion Based on ML (ML 기법에 기반을 둔 측정치 융합기법을 가진 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo;Park, Ju-Tae;Choi, Sung-Un
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.177-183
    • /
    • 2003
  • Recently, Ryu et al. proposed a multiple target DOA tracking algorithm, which has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio. In this paper, a measurement fusion method is presented based on ML(Maximum Likelihood), and the new DOA tracking algorithm is proposed by incorporating the presented fusion method into Ryu's algorithm. The proposed algorithm has a better tracking performance than that of Ryu's algorithm, and it sustains the good features of Ryu's algorithm.

  • PDF

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Track Initiation Algorithms for Multiple Maneuvering Target Tracking (클러터 환경에서 다중 기동표적 추적트랙 초기화)

  • Bae, Seung-Han;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.733-739
    • /
    • 2008
  • This article proposes algorithms for the automatic initiation of the tracks of maneuvering targets in cluttered environments. These track initiation algorithms consist of IPDA-AI(Integrated Probabilistic Data Association-Amplitude Information) and MPDA(Most Probable Data Association) in an Interacting Multiple Model(IMM) configuration, and they are referred to as the IMM-IPDAF-AI and IMM-MPDA respectively. The IMM portion consists of several filters based on different dynamical models to handle target maneuvers. Each of the filters utilizes an IPDA-AI(or MPDA) algorithm to deal with the problem of track existence in the presence of clutter. Although the primary purpose of this study is to deal with the track initiation problem, the IMM-IPDAF-AI and IMM-MPDA can also be used for the maintenance of existing tracks and the termination of tracks for targets when they disappear. For illustrative purposes, simulation is used to compare the performance of the algorithms proposed to other track formation algorithms.

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

A Design of Du-CNN based on the Hybrid Machine Characters to Classify Target and Clutter in The IR Image (적외선 영상에서의 표적과 클러터 구분을 위한 Hybrid Machine Character 기반의 Du-CNN 설계)

  • Lee, Juyoung;Lim, Jaewan;Baek, Haeun;Kim, Chunho;Park, Jungsoo;Koh, Eunjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.758-766
    • /
    • 2017
  • In this paper, we propose a robust duality of CNN(Du-CNN) method which can classify the target and clutter in coastal environment for IR Imaging Sensor. In coastal environment, there are various clutter that have many similarities with real target due to diverse change of air temperature, water temperature, weather and season. Also, real target have various feature due to the same reason. Thus, the proposed Du-CNN method adopts human's multiple personality utilization and CNN technique to learn and classify target and clutter. This method has an advantage of the real time operation. Experimental results on sampled dataset of real infrared target and clutter demonstrate that the proposed method have better success rate to classify the target and clutter than general CNN method.