Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories

동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석

  • Kang, Min-Young (Department of Radiation Oncology, Konkuk University Medical Center) ;
  • Lee, Bo-Ram (Department of Radiologic Science, College of Health Science, Korea University) ;
  • Kim, You-Hyun (Department of Radiologic Science, College of Health Science, Korea University) ;
  • Lee, Jeong-Woo (Department of Radiation Oncology, Konkuk University Medical Center)
  • 강민영 (건국대학교병원 방사선종양학과) ;
  • 이보람 (고려대학교 보건과학대학 방사선학과) ;
  • 김유현 (고려대학교 보건과학대학 방사선학과) ;
  • 이정우 (건국대학교병원 방사선종양학과)
  • Received : 2011.02.01
  • Accepted : 2011.03.04
  • Published : 2011.03.31

Abstract

The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.

본 연구의 목적은 회전조사 시 표적종양의 위치변위와 갠트리의 조사반경에 의한 치료깊이 변화에 따른 모의치료계획 결과와 선량전달 결과상의 오차를 분석하고자 하였다. 깊이 변위가 가장 이상적인 경우, 즉 팬텀의 중심에 표적이 위치한 경우와 한쪽으로 2.5 cm, 5 cm씩 치우친 경우로 나누어 모의실험하였다. 표적의 위치 변화에 따른 모의치료계획을 실시하기 위하여 IMRT Body 팬톰(I'mRT Phantom, Wellhofer Dosimetry, Germany)를 이용하여 전산화단층촬영장치(Computed Tomography, Light speed 16, GE, USA)로 데이터를 획득하였다. 획득된 영상을 이용하여 치료계획장치(Treatment Planning System, Eclipse, ver. 6.5, VMS, Palo Alto, USA)를 이용하여 정중앙, 2.5 cm, 5 cm에 가상의 치료표적을 만들어 모의치료계획을 수립하였다. 선형가속기(CL21EX, VMS, Palo Alto, USA)의 6 MV 광자선과 최근 개발된 Gafchromic 필름(EBT2, ISP, Wayne, USA)을 이용하여 선량분포를 측정하였고, 선량분석프로그램(OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany)을 이용하여 모의치료계획 데이터와 측정 데이터를 정량적으로 분석하였다. 분석프로그램으로 횡축방향 선량분포 프로파일(Cross-plane profile)과 선량분포를 정량적으로 분석하기 위하여 감마인덱스(DD: 3%, DTA: 2 mm) 히스토그람을 이용하였다. 표적과 표적주변의 선량분포는 Conformity index(CI), Homogeneity index(HI)를 이용하여 정량적으로 분석하였다. 치료표적 전체체적에 대한 100% 선량분포에 포함되는 체적을 비교하여 분석하였다. 표적의 위치가 5 cm 에 있는 경우 다문동적회전조사(Multiple Conformal Arc Therapy, MCAT)는 23.8%, 단일동적회전조사(Single Conformal Arc Therapy, SCAT)는 35.6%, 고정조사는 37%였고, 표적이 2.5 cm에 있는 경우 MCAT 61%, SCAT 21.5%, 고정조사 14.2%로 분석되었다. 표적의 위치가 중앙에 있는 경우 MCAT 70.5%, SCAT 14.1%, 고정조사 36.3%로 나타났다. 표적의 위치가 5 cm 치우쳐 있는 경우를 제외하고 MCAT의 100% 선량분포에 포함되는 체적이 가장 크게 나타났다. 감마인덱스 히스토그램 분석결과, SCAT의 경우 37.1, 27.3, 29.2로 MCAT의 경우 9.2, 8.4, 10.3에 비해 최소 2.8배, 최대 4배 오차가 크게 나타났다. 결론적으로, 동적조형회전조사 시 표적종양의 위치변이와 조사반경의 변화에 따라 선량전달오류의 가능성을 알 수 있었으며 치료표적의 위치가 정중앙이 아닐 경우, 깊이와 회전반경을 최적화함으로써 정확한 선량 전달을 할 수 있다고 생각한다.

Keywords

References

  1. Muren LP, Wasbo E, Helle SI et al: Intensitymodulated radiotherapy of pelvic lymph nodes in locally advanced prostate cancer: Planning procedures and early experiences. Int J Radiat Oncol Biol Phy 71, 1034-1041, 2009
  2. Luka, S.; Kurup, R. Comparison of treatment plans for irradiating adenocarcinoma of the prostate. Med. Dosim. 20, 117-122, 1995 https://doi.org/10.1016/0958-3947(95)00002-E
  3. Clark, B.; McKenzie, M.; Robar, J.; et al. Does intensity modulation improve healthy tissue sparing in stereotactic radiosurgery of complex arteriovenous malformations. Med. Dosim. 32, 172-180, 2007 https://doi.org/10.1016/j.meddos.2006.12.002
  4. Otto L: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35, 310-317, 2007
  5. Korreman S, Medin J, Kjar-Kristoffersen F: Dosimetric verificatio of RapidArc treatment delivery. Acta Oncol 48, 185-191, 2009. https://doi.org/10.1080/02841860802287116
  6. Otto K: Patient-specific quality assurance method for VAMT treatment delivery. Med Phys 36, 4530-4535, 2009. https://doi.org/10.1118/1.3213085
  7. Malatesta T, Landoni V, Delle Canne S, et al: Dosimetric, mechanical, and geometric verification of conformal dynamic arc treatment. J Appl Clin Med Phys 4, 195-203, 2003 https://doi.org/10.1120/1.1585211
  8. Wong VY: Quality assurance devices for dynamic conformal radiotherapy. J Appl Clin Med Phys 5, 8-15, 2004 https://doi.org/10.1120/jacmp.26.145
  9. Feuvret L, Noel G, Mazeron JJ, Bey P: Conformity index: A review. Int J Radiat Oncol Biol Phys 64, 333-342, 2006 https://doi.org/10.1016/j.ijrobp.2005.09.028
  10. Betti OO, Derechinsky VE: Hyperselective Encephalic irradiation with linear accelerator. Acta Neurochir 33, 385-390, 1984
  11. Cardinale RM, Benedict SH, Wu Q et al: A comparison of three stereotactic radiotherapy technique; ARCS vs. noncoplanr fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys 42, 431-436, 1998 https://doi.org/10.1016/S0360-3016(98)00206-5
  12. Grebe G. Pffaender M, Roll M, Luedermann L: Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys 49, 1451-1460, 2001 https://doi.org/10.1016/S0360-3016(01)01436-5
  13. Matt Tobler, Gordon Watson, and Dennis D. Leavit.: THE Application of dynamic field shaping and dynamic dose rate control in conformal rotaion treatment of the prostate. Medical Dosimetry 27(4), 251-254, 2002 https://doi.org/10.1016/S0958-3947(02)00148-6
  14. Todorovic M, Fischer M, Cremers F, Thom E, Schmidt R: Evaluation of GafChromic EBT prototype B for external beam dose verification. Med Phys 33, 1321-1328, 2006 https://doi.org/10.1118/1.2188077
  15. http://online1.ispsorp.com/_layouts/Gafchromic/content/products/ebt2/pdfs/GA FCHROMICEBT2TechnicalBrief-Rev1.pdf
  16. Fuss M, Sturtewagen E, De Wagter C, Georg D: Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 52, 4211-4225, 2007 https://doi.org/10.1088/0031-9155/52/14/013