• Title/Summary/Keyword: Multiple Robotics Systems

Search Result 510, Processing Time 0.028 seconds

An offset-free self-tuning control and an improved recursive parameter estimation, and their application to a real plant

  • 양홍석;이석원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.817-826
    • /
    • 1987
  • An offset-free self-tuning control with pole placement (STCPP) and a recursive parameter estimation with multiple and variable forgetting factors (REWF), together with their application to a real plant, are described. There are two different types of offset-free STCPP; their features are analysed and discussed. REMVF employs as many forgetting factors as parameter estimates. It is suitable when parameters to be estimated are changing at different rates. The offset-free STCPP and REMVF have been successfully applied to a real plant, giving excellent results.

  • PDF

Policy-based Network Security with Multiple Agents (ICCAS 2003)

  • Seo, Hee-Suk;Lee, Won-Young;Yi, Mi-Ra
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Policies are collections of general principles specifying the desired behavior and state of a system. Network management is mainly carried out by following policies about the behavior of the resources in the network. Policy-based (PB) network management supports to manage distributed system in a flexible and dynamic way. This paper focuses on configuration management based on Internet Engineering Task Force (IETF) standards. Network security approaches include the usage of intrusion detection system to detect the intrusion, building firewall to protect the internal systems and network. This paper presents how the policy-based framework is collaborated among the network security systems (intrusion detection system, firewall) and intrusion detection systems are cooperated to detect the intrusions.

  • PDF

Identification of continuous time-delay systems using the genetic algorithm

  • Hachino, Tomohiro;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.1-6
    • /
    • 1993
  • This report proposes a novel method of identification of continuous time-delay systems from sampled input-output data. By the aid of a digital pre-filter, an approximated discrete-time estimation model is first derived, in which the system parameters remain in their original form and the time delay need not be an integral multiple of th sampling period. Then an identification method combining the common linear least squares(LS) method or the instrumental variable(IV) method with the genetic algorithm(GA) is proposed. That is, the time-delay is selected by the GA, and the system parameters are estimated by the LS or IV method. Furthermore, the proposed method is extended to the case of multi-input multi-output systems where the time-delays in the individual input channels may differ each other. Simulation resutls show that our method yields consistent estimates even in the presence of high measurement noises.

  • PDF

Pattern Analyses for Semi-Looper Type Robots with Multiple Links

  • Watanabe, Keigo;Liu, Guang Lei;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.963-968
    • /
    • 2005
  • For worm robots applied to pipe inspection and colonoscopy, earthworm-like robots that have a locomotion pattern in backward wave or green caterpillar-like robots that have a locomotion pattern in forward wave have been studied widely. Note however that a method using a single and fixed locomotion pattern is not desirable in the sense of mobility cost, if there are various changes in pipe diameter. In this paper, locomotion patterns are considered for a semi-looper-like robot, which adopts a locomotion pattern of green caterpillars as the basic motion and sometimes can realize a locomotion pattern of looper, whose motion approximately consists of two rhythms or relatively low rhythm.

  • PDF

Routing of Linear Motor based Shuttle Cars in the Agile Port Terminal with Constrained Dynamic Programming

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.278-281
    • /
    • 2008
  • Linear motor (LM) based shuttle cars will play an important role in the future transportation systems of marine terminals to cope with increasing container flows. These systems are known as agile port terminals because of their significant advantages. However, routing for multiple shuttle cars is still an open issue. We present a network model of a container yard and propose constrained dynamic programming (DP) for its routing strategy with collision avoidance. The algorithm is a modified version of typical DP which is used to find an optimal path for a single traveler. We evaluate the new algorithm through simulation results for three shuttle cars in a mesh-type container yard.

Self-organization of Swarm Systems by Association

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • This paper presents a framework for decentralized control of self-organizing swarm systems based on the artificial potential functions (APFs). The framework explores the benefits by associating agents based on position information to realize complex swarming behaviors. A key development is the introduction of a set of association rules by APFs that effectively deal with a host of swarming issues such as flexible and agile formation. In this scheme, multiple agents in a swarm self-organize to flock and achieve formation control through attractive and repulsive forces among themselves using APFs. In particular, this paper presents an association rule for swarming that requires less movement for each agent and compact formation among agents. Extensive simulations are presented to illustrate the viability of the proposed framework.

Optimal Period and Priority Assignment Using Task & Message-based Scheduling in Distributed Control Systems

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.1-60
    • /
    • 2001
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been being applied to process systems but it is very difficult to design the DCS in order to guarantee the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of ...

  • PDF

Dynamic Positioning Control of a Twin-hull Unmanned Surface Ship (쌍동형 무인선의 동적위치제어에 관한 연구)

  • Kang, Minju;Kim, Taeyun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.217-225
    • /
    • 2016
  • Dynamic Positioning (DP) is used to automatically maintain the position and heading of a floating structure subjected to environmental disturbances. A DP control system is composed of a motion controller to compute the desired force and moment and a thrust allocator to distribute the computed force and moment to multiple thrusters considering mechanical and operational constraints. Among various thruster configurations, azimuth thrusters or propeller/rudder pairs tend to make the allocation problem difficult to solve, because these types of propulsion systems include nonlinear constraints. In this paper, a dynamic positioning strategy for a twin-thruster ship that is propelled by two azimuthing thrusters is addressed, and a thrust allocation method which does not require a numerical optimization solver is proposed. The applicability of the proposed method is demonstrated with an experiment using an autonomous boat.

A Simultaneous Object Tracking and Obstacles Avoidance Controller with Fuzzy Danger Factor of Mobile Robot (퍼지 위험지수에 의한 이동로봇의 물체 추적 및 장애물 회피 주행 제어기)

  • Kang, Jae-Gu;Lee, Joong-Jae;Jie, Min-Seok;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.212-220
    • /
    • 2007
  • This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.

  • PDF

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.