• Title/Summary/Keyword: Multiple Linear Regression(MLR)

Search Result 126, Processing Time 0.027 seconds

Prediction of Seasonal Nitrate Concentration in Springs on the Southern Slope of Jeju Island using Multiple Linear Regression of Geographic Spatial Data (지리 공간 자료의 다중회귀분석을 이용한 제주도 남측사면 용천수의 시기별 질산성 질소 농도 예측)

  • Jung, Youn-Young;Koh, Dong-Chan;Kang, Bong-Rae;Ko, Kyung-Suk;Yu, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.135-152
    • /
    • 2011
  • Nitrate concentrations in springs at the southern slope of Jeju Island were predicted using multiple linear regression (MLR) of spatial variables including hydrogeological parameters and land use characteristics. Springs showed wide range of nitrate concentrations from <0.02 to 86 mg/L with a mean of 20 mg/L. Spatial variables were generated for the circular buffer when the optimal buffer radius was assigned as 400 m. Selected regression models were tested using the p values and Durbin-Watson statistics. Explanatory variables were selected using the adjusted $R^2$, Cp (total squared error) and AIC (Akaike's Information Criterion), and significance. In addition, mutual linear relations between variables were also considered. Small portion of springs, usually <10% of total samples, were identified as outliers indicating limitations of MLR using circular buffers. Adjusted $R^2$ of the proposed models was improved from 0.75 to 0.87 when outliers were eliminated. In particular, the areal proportion of natural area had the greatest influence on the nitrate concentrations in springs. Among anthropogenic land uses, the influence of nitrate contamination is diminishing in the following order of orchard, residential area, and dry farmland. It is apparent quality of springs in the study area is likely to be controlled by land uses instead of hydrogeological parameters. Most of all, it is worth highlighting that the contamination susceptibility of springs is highly sensitive to nearby land uses, in particular, orchard.

A Study on the Hydroclimatic Effects on the Estimation of Annual Actual Evapotranspiration Using Watershed Water Balance (유역 물수지를 이용한 연 실제증발산 산정에 미치는 수문기후 영향 연구)

  • Rim, Chang-Soo;Lim, Ga-Hui;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.915-928
    • /
    • 2011
  • The main purpose of this study is to understand the effects of hydroclimatic factors on annual actual evapotranspiration and to suggest the multiple linear regression (MLR) equations for the estimation of annual actual evapotranspiration from watershed. To accomplish this study purpose, 5 dam watersheds (Goesan dam, Seomjingang dam, Soyanggang dam, Andong dam, Hapcheon dam) were selected as study watersheds and annual actual evapotranspiration was estimated based on annual water balance analysis from each watershed. The estimated annual actual evapotranspiration from water balance analysis was used to evaluate the MLR equations. Furthermore, the possibility of the estimation of actual evapotranspiration using potential evapotranspiration equations (Penman equation, FAO P-M equation, Makkink equation, Preistley-Taylor equation, Hargreaves equation) was evaluated. It has turned out that it is not appropriate to use potential evapotranspiration for the estimation of actual evapotranspiration because the correlation between actual evapotranspiration and potential evapotranspiration is very low. The comparison of MLR equations with current actual evapotranspiration equations indicates that MLR equations can be used for the estimation of annual actual evapotranspiration. Furthermore, it has turned out that the effects of hydroclimatic factors on annual actual evapotranspiration from dam watersheds are different in each watershed; however, for all watersheds in common precipitation has turned out to be the most important climatic factor affecting on the estimation of annual actual evapotranspiration.

Identification of Printer Noise Source and Its Sound Quality Evaluation System Development (프린터 부품 소음원에 따른 감성소음 평가시스템의 개발)

  • Park, Sang-Won;Yang, Hong-Jun;Na, Eun-Woo;Lee, Sang-Kwon;Park, Yeong-Jae;Kim, Jong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1018-1024
    • /
    • 2010
  • The printer noise consists of the noise of the various components and parts such as motor, fan and solenoid. And the human's printing sound recognition shows various aspects when the printer starts to print papers because the components operate at the same time. Especially, printers are usually installed in the quiet office room. Therefore the printing noise is related to its competitiveness in the market. The importance of the printer sound qualities is increasing and it is necessary to develop the sound quality evaluation system, so it is a key point to identify the noise source of the printer and develop the sound quality index to each component. By using this evaluation system, it is possible to evaluate the sound quality of a prototype printer compared to the already existing one. In this paper, the printer sound quality evaluation system was developed by the following steps. Firstly, the signal processing method was applied to the recorded printing sound to identity and split the noise of components. Secondly, the MLR(multiple linear regression) method and the psychoacoustics were used to develop the sound quality index. Finally, the improvement of the printer sound quality is possible by using the result of the MLR and the path analysis. The output of this research will be applied to the development of a new printer.

Conformity Assessment of Machine Learning Algorithm for Particulate Matter Prediction (미세먼지 예측을 위한 기계 학습 알고리즘의 적합성 평가)

  • Cho, Kyoung-woo;Jung, Yong-jin;Kang, Chul-gyu;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Due to the human influence of particulate matter, various studies are being conducted to predict it using past data measured in the atmospheric environment monitoring network. However, it is difficult to precisely set the measurement environment and detailed conditions of the previously designed predictive model, and it is necessary to design a new predictive model based on the existing research results because of the problems such as the missing of the weather data. In this paper, as a previous study for particulate matter prediction, the conformity of the algorithm for particulate matter prediction was evaluated by designing the prediction model through the multiple linear regression and the artificial neural network, which are machine learning algorithms. As a result of the prediction performance comparison through RMSE, 18.13 for the MLR model and 14.31 for the MLP model, and the artificial neural network model was more conformable for predicting the particulate matter concentration.

Development of Automatic Peach Grading System using NIR Spectroscopy

  • Lee, Kang-J.;Choi, Kyu H.;Choi, Dong S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1267-1267
    • /
    • 2001
  • The existing fruit sorter has the method of tilting tray and extracting fruits by the action of solenoid or springs. In peaches, the most sort processing is supported by man because the sorter make fatal damage to peaches. In order to sustain commodity and quality of peach non-destructive, non-contact and real time based sorter was needed. This study was performed to develop peach sorter using near-infrared spectroscopy in real time and nondestructively. The prototype was developed to decrease internal and external damage of peach caused by the sorter, which had a way of extracting tray with it. To decrease positioning error of measuring sugar contents in peaches, fiber optic with two direction diverged was developed and attached to the prototype. The program for sorting and operating the prototype was developed using visual basic 6.0 language to measure several quality index such as chlorophyll, some defect, sugar contents. The all sorting result was saved to return farmers for being index of good quality production. Using the prototype, program and MLR(multiple linear regression) model, it was possible to estimate sugar content of peaches with the determination coefficient of 0.71 and SEC of 0.42bx using 16 wavelengths. The developed MLR model had determination coefficient of 0.69, and SEP of 0.49bx, it was better result than single point measurement of 1999's. The peach sweetness grading system based on NIR reflectance method, which consists of photodiode-array sensor, quartz-halogen lamp and fiber optic diverged two bundles for transmitting the light and detecting the reflected light, was developed and evaluated. It was possible to predict the soluble solid contents of peaches in real time and nondestructively using the system which had the accuracy of 91 percentage and the capacity of 7,200 peaches per an hour for grading 2 classes by sugar contents. Draining is one of important factors for production peaches having good qualities. The reason why one farm's product belows others could be estimated for bad draining, over-much nitrogen fertilizer, soil characteristics, etc. After this, the report saved by the peach grading system will have to be good materials to farmers for production high quality peaches. They could share the result or compare with others and diagnose their cultural practice.

  • PDF

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Water Quality Assessment and Turbidity Prediction Using Multivariate Statistical Techniques: A Case Study of the Cheurfa Dam in Northwestern Algeria

  • ADDOUCHE, Amina;RIGHI, Ali;HAMRI, Mehdi Mohamed;BENGHAREZ, Zohra;ZIZI, Zahia
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.563-573
    • /
    • 2022
  • This work aimed to develop a new equation for turbidity (Turb) simulation and prediction using statistical methods based on principal component analysis (PCA) and multiple linear regression (MLR). For this purpose, water samples were collected monthly over a five year period from Cheurfa dam, an important reservoir in Northwestern Algeria, and analyzed for 12 parameters, including temperature (T°), pH, electrical conductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), phosphate (PO43-), total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen (DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water was charged with phosphate (PO43-) in the whole period of study. The PCA results revealed ten factors, three of which were significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the data variability can be explained by the model. TSS, DO, EC, NO3-, NO2-, and COD were the most significant contributing parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.

Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell

  • Kim, Myung-Gil;Shin, Hye-Seoung;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.

A Comparative QSPR Study of Alkanes with the Help of Computational Chemistry

  • Kumar, Srivastava Hemant
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • The development of a variety of methods like AM1, PM3, PM5 and DFT now allows the calculation of atomic and molecular properties with high precision as well as the treatment of large molecules with predictive power. In this paper, these methods have been used to calculate a number of quantum chemical descriptors (like Klopman atomic softness in terms of $E_n^{\ddag}\;and\;E_m^{\ddag}$, chemical hardness, global softness, electronegativity, chemical potential, electrophilicity index, heat of formation, total energy etc.) for 75 alkanes to predict their boiling point values. The 3D modeling, geometry optimization and semiempirical & DFT calculations of all the alkanes have been made with the help of CAChe software. The calculated quantum chemical descriptors have been correlated with observed boiling point by using multiple linear regression (MLR) analysis. The predicted values of boiling point are very close to the observed values. The values of correlation coefficient ($r^2$) and cross validation coefficient ($r_{cv}^2$) also indicates the generated QSPR models are valuable and the comparison of all the methods indicate that the DFT method is most reliable while the addition of Klopman atomic softness $E_n^{\ddag}$ in DFT method improves the result and provides best correlation.

A Study on Regionalization of Parameters of Continuous Rainfall-Runoff Model (연속 강우-유출모형의 매개변수 지역화에 관한 연구)

  • Jeong, Ga-In;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.182-182
    • /
    • 2015
  • 우리나라에서는 강우관측시스템의 지역적 불균형으로 상대적으로 소규모 저수지의 경우 미계측유역의 특성을 가지며, 신뢰성 있는 강우량, 유출량, 증발량 자료가 매우 부족한 실정이다. 다목적댐 유역과 같은 계측유역의 경우 상류유역의 유입량 자료의 확보가 용이하지만 대부분의 유역의 경우 계측장비가 부족하여 신뢰성이 확보된 유입량 자료를 얻는데 많은 어려움이 있다. 본 연구에서는 미계측유역의 유입량 산정을 위하여 계측유역을 대상으로 강우-유출 모형의 매개변수를 산정하였으며, 산정된 매개변수를 유역특성인자와의 상관성을 토대로 다중선형회귀분석기법(multiple linear regression, MLR)을 적용하여 지역화(regionalization)를 위한 회귀식을 도출하였다. 이를 위해 양질의 유량자료가 확보된 K-water 17개 댐 유역을 대상으로 매개변수를 산정하였으며 이 중 2개의 댐 유역을 미계측유역으로 간주하여 개발된 모형을 검증하였다. 대부분의 통계 지표에서 우수한 모의능력을 확인하였으며, 본 연구를 통하여 개발된 지역화 기법을 미계측유역에 활용한다면 보다 정량적이고 효율적인 수자원 계획이 가능할 것으로 판단된다. 향후 연구로는 불확실성을 고려한 Bayesian GLM 모형을 이용한 지역화기법을 개발하여 매개변수의 불확실성까지 고려할 수 있는 방안을 모색하고자 한다.

  • PDF