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1. Introduction1)

Water pollution is currently a serious problem that threatens the seas 
and inland waters. Industrial and household waste discharged into riv-
ers and streams disrupt the balance of the ecosystem and lead to sig-
nificant problems in terms of public health by affecting the quality of 
water[1]. Surface and dam waters in particular are more sensitive to 

pollution, they pose even greater health risks than other water sources 

as they cannot be self-purified[2]. The quality of surface water is 
strongly affected by both natural processes due to the hydrological, 
geological, and climatic factors and by anthropogenic impacts 
(agricultural, urban, and industrial discharges)[3-4]. Rigorous environ-
mental monitoring of changes in pollution level is necessary to ensure 
the safety of this ecosystem. Of all the parameters needed to determine 
the state of surface water, turbidity can be considered as one of the 
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most important. High values of this parameter normally reflect high 
values of other pollution-related parameters such as chemical oxygen 
demand, total suspended solid, nitrate, ammonium, sulphate, ...etc[5]. 
The measurement of turbidity is an effective mean of determining the 
optical quality of water; its magnitude is indicative of probable water 
pollution which could be hazardous to human health[6]. Furthermore, 
high levels of turbidity present during the treatment of raw water can 
limit the effectiveness of filtration and chlorination processes designed 
to remove dangerous bacteria and parasites such as Cryptosporidium [7]. 

Water quality monitoring generates complex and high-dimensional 
data which are generally analyzed and evaluated via statistical techni-
ques[8]. Techniques such as cluster analysis (CA), factor analysis (FA), 
discriminant analysis (DA), analysis of variance (ANOVA) and water 
quality index (WQI) have proven to be very helpful in understanding 
spatial and temporal variations in water quality data. Besides, other 
statistical approaches including multiple linear regression (MLR), 
Principal Component Analysis (PCA), artificial neural networks 
(ANNs), multivariate receptor models (MRMs) and several simulation 
and Forecasting methods have been successfully applied in recent stud-
ies[9-14]. It has been shown that these methods can reduce data di-
mensions and highlight the significant variables that explain changes in 
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and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen 
(DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water 
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significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% 
of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The 
MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the 
data variability can be explained by the model. TSS, DO, EC, NO3

-, NO2
-, and COD were the most significant contributing 

parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management 
and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.
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water quality. Also, they permit to assess the correlation among the 
variables and to develop predictive models for the selected ones. 

PCA is one of the dimensional reduction techniques that retains 
most of the useful information from a dataset while attempting to re-
duce its dimensions. Literature data indicated that PCA was the most 
frequently used method for water quality assessment over the past thir-
ty years[15]. The benefit of this approach is that it permits to link and 
correlate the results to environmental factors, to processes and to con-
tamination sources in water ecosystems[15]. It has been applied for 
evaluating spatial and temporal variations in surface water and ground-
water quality[16-18]. Also, PCA was used. to identify the principal 
sources of pollution in xin’anjiang river (China), the results revealed 
that nutrient and organic pollutants were the principal factors affecting 
water quality of the examined river[19]. Additionally, PCA has been 
successfully applied for optimizing water quality monitoring networks 
[20]. In some cases, PCA has been combined with other statistical 
tools for data analysis, the combined models demonstrated effective-
ness and robustness on assessing, monitoring and predicting water 
quality[21,22]. Multiple linear regression is a statistical tool that allows 
to establish linear relationships between a response variable and several 
explanatory variables[23]. Used for predictive purposes, MLR in com-
bination with PCA has proven to be effective in identifying the most 
significant parameters that contributed to the variation in water qual-
ity[23,24].

In Algeria, an acute population increase caused a rapid increase in 
agricultural land use and industrial development[25]. For these reasons, 
the Algerian authorities have implemented an important plan to the 
construction of dams and reservoirs to surmount the water deficit. The 
first phenomenon of “water pollution” appeared as soon as the work 
was completed. The wadis (streams), which are the dam’s main source 
of water supply, may also be the main cause of pollution[26]. In this 
perspective this work is carried out. The objective is to demonstrate 
the importance of monitoring the turbidity parameter as an indicator of 
surface water pollution by applying statistical methods. The first tech-
nique used is the principal component analysis (PCA) which allows us 
to extract the different elements correlated to Turb and the potential 
sources of pollution. Multiple linear regression (MLR) was then ap-
plied to predict turbidity. Indeed, MLR models have been successfully 
employed to study the behavior of natural systems and have demon-
strated high performance and accuracy.

2. Materials and methods

2.1. Study area
The Cheurfa dam (35°23'29''N/0°16'22''W), currently named Cheurfa 

II, is one of the most important dams in North-West Algeria, located 
in the large Macta watershed. The dam regulates the waters of the 
Mabtouh Wadi (35°21'20''N/0°19'1''W) (Figure 1) which is the ex-

Figure 1. Map showing Location of the study area and discharge points.
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tension of the Mekerra Wadi (35°12'05''N/0°36'18''W). Thus, the 
Cheurfa dam is mainly fed by the Mekerra Wadi. It was built upstream 
of the old Cheurfas dam (Cheurfa I) and was commissioned in 1992. 
Theoretically, the storage capacity of the dam is 83 hm3 with an annual 
regulated volume of 45 hm3, 20 hm3 of this volume are for irrigation 
[27]. It is used to supply drinking water to the following urban areas: 
Ain Adden, Boujebha El Borj, Oued Mabtouh, Chorfa and Douar 
Rehailia which are thickly settled as well as the industrial zone of Sig 
[28]. 

From the climate point of view, the watershed of Cheurfa dam is 
subject to a semi-arid climate with irregular rainfall characterized by 
intense autumnal showers causing major floods. The monthly average 
temperature is around 27.21 °C with a cold winter where the average 
temperature in January is about 2.45 °C and a hot-dry summer with 
a temperature of 36.12 °C at July[27]. The average annual rainfall dur-
ing the analyzed period was 230.34 ± 87.816 mm, it varied between 
a minimum of 125.3 and a maximum of 368.9 mm/year. The highest 
amount of precipitation was recorded in January 2016 (147.9 mm). The 
main characteristics of the dam are summarized in Table 1.

The Cheurfa dam is affected by various sources of pollution. 
Significant quantities of wastewaters are discharged into the Oued 
Mekerra-Mebtouh and approximately 8000 m3/year reach the Cheurfa 
Dam[29]. Other sources of pollution are involved, pollution of agricul-
tural origin (mainly poultry farming) accounts for 1.68 T/d, urban pol-
lution emanating from urban areas as well as industrial pollution esti-
mated at 1542 m3 of discharges / d[29]. Moreover, the main industrial 
activities in the basin of the Mekerra are located in the northwestern 
of Sidi Bel Abbes city, known by the presence of large industrial units 
for dairy production and food processing. These discharge wastewater 
into the Oued El maleh (tributary of oued Mekerra) without any prior 
treatment contributing to the pollution of the Cheurfa dam[30].

2.2. Sampling and analytical methods
To evaluate the effect of anthropogenic pollution on water quality 

and show the importance of measuring turbidity during a surface water 
analysis, monthly raw water were sampled over periods ranging from 
2014 to 2018 to monitor and analyze twelve (12) physico-chemical 
variables, namely: temperature(T°C), potential hydrogen (pH), con-
ductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium 
(N-NH4

+), nitrate (N-NO3
-), nitrite (N-NO2

-), orthophosphates (P-PO4
3-), 

total suspended solid (TSS), biochemical oxygen demand (BOD5) and 
chemical oxygen demand (COD). The water samples stored in poly-
ethylene bottles of one-liter capacity were collected at a depth of 0.50 
m and at 3 m from the border of the dam's dike according to Rodier 
et al.[31], and then transported to the laboratory in a cooler as to main-
tain the temperature at 4 °C.

The water temperature, pH, electrical conductivity, and dissolved 
oxygen were measured in situ using a mercury thermometer, an 
OHARU-ST10 pH meter, a HANNA conductivity meter and a HANNA 
oximeter respectively. The turbidity measurements (in Nephelometric 
Turb units (NTU)) were performed with a portable AL450T-IR 
turbidimeter. The remaining water parameters were analyzed in the lab-
oratory using the standard methods for water and wastewater. The fil-
tration method (NFT90-105) for TSS measurement, the BOD5 (mg/L 
d’O2) was measured using a manometric method. N-NO3

- (mg/L), 
N-NO2

- (mg/L) and N-NH4
+ (mg/L) were determined by applying spec-

trophotometric methods: ISO 7890-3, NFT90-013, NFT90-015 
respectively. The P-PO4

3- (mg/L) and COD (mg/L d’O2) were analyzed 
by colorimetry that uses molybdate method (DR/820) and Manganese 
III method (8048/10067) respectively.

2.3. Statistical analysis
Chemometric techniques are very useful for the description of many 

variables in an analytical system and determine possible relationships 
between them. The explication of water quality status of an aquatic 
system is difficult and complicated. Principal Component Analysis 
(PCA) is one of the most important methods used to reduce the di-
mensionality of a data matrix while retaining most of the original in-
formation[15-16,32-33] and to better assess the effect of human activ-
ities on water quality. The data matrix used contains 12 variables 
(parameters analyzed) namely: (T, pH, EC, Turb, TSS, DO, COD, 
BOD5, NO3

-, NO2
-, NH4

+, PO4
3- ) and 60 samples (individuals). 

Analyses were carried out by the software “R 3.6.1” available from: 
(https://cran.r-project.org/bin/windows/base/old/3.6.1/). 

The multiple linear regression model (MLR) consists of explaining 
an indicator parameter of surface water pollution which is the Turb (y, 
as a dependent response) as a function of the physicochemical parame-
ters (x1, x2, x3, x4…. x11) which are therefore the independent variables 
(T°, pH, EC, TSS, COD, BOD5, NO3

-, NO2
-, NH4

+, PO4
3-, DO. This is 

the principle of analysis when, in a statistical series at p dimensions, 

Year Tributary 
(hm3)

Consumption (hm3) Leakage 
(hm3)

Evaporation 
(hm3)

Deffluent 
(hm3)

Stocked Volume (hm3) / 
capacity (83 hm3)Water supply Irrigation

2013 46.440 2.489 25.041 1.671 5.558 53.826 45.81

2014 51.22 3.52 22.31 1.23 4.361 48.521 43.886

2015 41.23 2.12 24.36 1.14 4.31 19.541 44.1458

2016 33.32 1.361 19.62 1.02 5.521 18.252 35.0475

2017 40.512 2.012 19.121 0.19 6.23 20.314 31.179

2018 26.51 2.31 20.41 1.05 3.52 15.281 32.439
*Data from the National Agency for Dams and Transfers (ANBT)

Table 1. Main Characteristics of the Cheurfa Dam*
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a relationship is established between one of the quantitative variables 
and the other variables[34]. The Turb equation as a function of the 
physicochemical parameters will be as follows (Equation 1):

    ………  ε (1)

Where 
y is denoted as the expected value of the predictor variable, A0; 
A1; A2; … Ak  is the regression coefficients associated with the 
independent variables X1; X2; X3… Xk , respectively and ε is de-
noted the random error.

The software “MINITAB16” was used to process the statistical model, 
it is downloadable from the website: (https://minitab.informer.com/16.2/). 
The analysis of variance (ANOVA) was applied to predict the fitness 
and significance of the regression model.

3. Results and discussion

3.1. Surface water quality parameter
The temporal variations analysis results during the period 2014-2018 

of the physico-chemical parameters waters sampled at the Cheurfa dam 
and their summary are presented in Tables 2 and 3. Box-plot graphs 
for water quality data are shown in Figure 2, highlighting that the 
average of T° values vary between 17.9 °C and 21 °C with a max-
imum of 30 °C (Figure 2), this value recorded exceeds the 25 °C 
standard[35]. The water pH (Table 2) shows the average values re-
corded ranging from 7.54 to 8.12, it indicates a low to medium alka-
line water, and these values correspond to the Algerian standard for the 
quality of surface water intended for drinking water supply[35] where 
the standard range for pH is set at 6.5 ≤ pH ≤ 9. Just as important 
is the EC, it reflects the overall degree of mineralization and provides 
information on the salinity rate[36]. The average values obtained fluc-
tuate between 1974.92 µS/cm and 2568.33 µS/cm and indicate highly 
mineralized water that is difficult to use in irrigated areas according 

Variable Minimum Maximum Mean ± SD

T 10.5 31 19.86 ± 5.42

pH 7.06 8.6 7.82 ± 0.36

EC 1410 2790 2267.35 ± 320.98

Turb 4.18 105 36.71 ± 27.23

DO 4.1 13.1 8.23 ± 2.43

TSS 1.5 90 27.80 ± 22.02

COD 19 118 59.43 ± 24.84

BOD5 4.5 17.6 9.59 ± 3.28

NO3
- 2 41 16.10 ± 8.33

NO2
- 0.007 0.8 0.27 ± 0.24

NH4
+ 0.01 1.62 0.55 ± 0.31

PO4
3- 0.1 2.01 0.57 ± 0.30

Table 3. Recapitulation of Global Statistics

to Rodier et al.[31]. Since Turb depends on the presence of suspended 
solids in the water such as organic debris, clays, microscopic 
organisms..., the quantification of these suspended solids measures its 
degree[37]. The monitoring of this parameter indicates a maximum val-
ue registered of 105 NTU and a minimum of 4.18 NTU (Table 3), the 
highest value was observed during a heavy precipitation of 53.7 mm 
in a winter period (January 2014). In fact, after heavy precipitation, 
Turb can exceed 100 and even 200 NTU[31]. Water with high turbid-
ity is a hindrance to the effectiveness of microbial decontamination 
treatment, even when the free residual chlorine was sustained for more 
than an hour[31]. The indicative value set by decree n°11-125-03/2011 
[38] relating to the quality of drinking water is 5 NTU. Regarding TSS, 
Table 3 displays a maximum value of 90 mg/L and a minimum of 1.5 
mg/L with an annual average of 27.80 mg/L. The measurements ob-
tained during the rainy period exceed the limit value of 25 mg/L[35]. 
As for DO, its concentration gives us information on the level of pol-
lution and consequently on the degree of self-purification of water 

Years 2014 2015 2016 2017 2018

Variable Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

T 12.6 30 20.88 ± 6.83 12 31 21 ± 6.26 15 25 18.56 ± 3.48 10.8 24.2 19.41 ± 4.32 10.5 28 17.89 ± 5.8

pH 7.5 8.6 8.12 ± 0.37 7.2 8.3 7.83 ± 0.34 7.06 8.04 7.54 ± 0.31 7.45 7.97 7.73 ± 0.15 7.3 8.5 7.87 ± 0.37

EC 1701 2200 1974.92 ± 165.63 1732 2500 2288.92 ± 250.29 1410 2790 2239.92 ± 440.45 2050 2670 2264.66 ± 225.40 2280 2780 2568.33 ± 155.73

Turb 21 105 52.4 ± 27.78 16 83.3 36.41 ± 22.25 4.18 95 22.82 ± 26.05 6.87 102 41.28 ± 32.60 12 75.9 30.63 ± 20.67

DO 4.1 11.3 7.48 ± 2.52 5.3 13.1 8.91 ± 2.71 4.5 12.6 8.08 ± 2.67 5.1 11.9 8.87 ± 1.82 4.2 11.7 7.82 ± 2.38

TSS 12 70 34.83 ± 20.50 9 68 25.42 ± 18.87 1.5 85 18.54 ± 24.83 7 90 35.92 ± 27.02 8 58 24.29 ± 15.49

COD 52 118 79.68 ± 18.93 21 109 58.02 ± 26.42 36 87 60.26 ± 18.63 24 88.5 48.042 ± 18.10 19 104 51.12 ± 30.21

BOD5 6.5 17.6 11.36 ± 2.97 4.5 14.2 8.42 ± 2.78 4.8 14.2 9.32 ± 3.46 5.4 14.5 8.8 ± 3.13 4.8 16.1 10.06 ± 3.65

NO3
- 2 25.5 12.73 ± 2.97 8 26 14.45 ± 5.12 4.6 33 17.97 ± 10.48 4.2 41 15.44 ± 11.04 12.1 29 19.93 ± 6.36

NO2
- 0.02 0.74 0.27 ± 6.19 0.01 0.75 0.28 ± 0.264 0.007 0.72 0.26 ± 0.24 0.05 0.75 0.23 ± 0.23 0.02 0.8 0.32 ± 0.27

NH4
+ 0.49 1.19 0.69 ± 0.18 0.01 0.66 0.42 ± 0.21 0.07 1.05 0.46 ± 0.29 0.1 1.22 0.51 ± 0.34 0.13 1.62 0.67 ± 0.42

PO4
3- 0.41 2.01 0.79 ± 0.40 0.12 0.82 0.52 ± 0.22 0.31 0.87 0.54 ± 0.17 0.13 0.79 0.4 ± 0.20 0.1 1.08 0.57 ± 0.35

Table 2. Statistical Description (min, max, mean and SD) of Water Quality Parameters from 2014 to 2018
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source[39]. The observations in Table 3 reveal a maximum DO con-
centration of 13.1 mg/L and a minimum of 4.1 mg/L with an annual 
average of 8.23 mg/L. The highest and lowest levels of DO were ob-
served in wet and dry periods respectively, this is consistent with con-
clusions of Hébert and Légaré[40] indicating that water at low temper-
ature contains more dissolved oxygen than at high temperature. The 
COD and BOD5 value varied between 19 mg/L and 118 mg/L; 4.5 
mg/L and 16.1 mg/L with an average of 59.4 mg/L and 9.6 mg/L re-
spectively (Table 3), these high values exceeded the standard of 30 
mg/L and 7 mg/L[35]. According to the ANRH[41] normative grid, 
these waters belong to category 3 (highly polluted waters). For nutrient 
concentrations, Table 3 illustrates the extreme measures noted 2 mg/L 
and 41 mg/L for NO3

-, 0.007 mg/L and 0.8 mg/L for NO2
- with an an-

nual average values of 16.10 mg/L and 0.27 mg/L respectively. These 
results clearly imply the presence of acceptable condition below the 
upper limit set by decree n°11-219-06/2011[35] for NO3

- and NO2
-. 

The high concentrations in specific periods of the year are probably re-
lated to the fertilization practices in the area and to the fertilizer runoff 
caused by the seasonal rainfalls. For NH4

+, the maximum values were 
registered in the wet season (1.62 mg/L) and the lowest ones (0.01 
mg/L) were observed in the summer period with an average value of 
0.55 mg/L; these amounts are above the upper limit of the acceptable 
water quality range (0.01 mg / L to 0.1 mg / L). Rezak et al.[27] and 
Papin et al.[42] have found similar results in surface water samples 
used for drinking water production. The PO4

3- concentrations varied 
between a minimum of 0.1 mg/L and a maximum of 2.01 mg/L, these 

results remain much lower than those reported by Akatumbila et 
al.[43] who showed maximum PO4

3- concentrations in the order of 
39.48 mg/L. Nevertheless, our results are higher compared to those ob-
tained by Allalgua et al.[44] in the Dam of Foum El-Khanga (East of 
Algeria) where maximum level of phosphate ions found was only 0.13 
mg/L. According to the ANRH[41], this water can be classified in 3rd 
category (poor quality water from 0.1 mg/L to 3 mg/L in PO4

3-).

3.2. Principal component analysis (PCA)
The principal component analysis results are shown in Table 5 and 

Figures 3 and 4. The correlation matrix (Table 4) gives a first insight 
of the existing association between the studied parameters and relates 
the common origin of the studied elements. Linear correlations are ob-
served between the parameters measured during our study and are 
shown in bold in Table 4. The analysis elucidates the relationship be-
tween the physicochemical parameters and the extraction of the most 
relevant variables correlated with turbidity. The determination of the 
principal sources of pollution is explained by the contribution of each 
element to the formation of the three main factors (Table 5). Our find-
ings reveal three axes that express 75.5% of the information contained 
in the matrix of input variables, of which factor 1 (F1), factor 2 (F2) 
and factor3 (F3) summarize 36.5%, 26.7% and 12.26% respectively. 
Projection of the variables on the F1-F2 axis (Figure 3) makes it possi-
ble to distinguish the groups of variables having certain conformity 
among them, the first group of elements best explained by the F1 are: 
(Turb, TSS, NO2

-, NO3
-) in its positive part and are highly correlated 

Figure 2. Box plots representing the temporal variations of the analyzed physico-chemical parameters.
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Table 4. Correlation Matrix

Param T pH EC Turb DO TSS COD BOD5 NO3
- NO2

- NH4
+ PO4

3-

T 1

pH r = 0.085
P = 0.517 1

EC r = 0.028 
p = 0.830

r = -0.316
p = 0.014 1

Turb r = -0.518
p = 0.000

r = 0,305 
p = 0.018

r = 0.08
p = 0.544 1

DO r = 0.430
P = 0.001

r = 0.040 
P = 0.763

r = 0.039
P = 0.765

r = 0.248
P = 0.056 1

TSS r = 0.494
p = 0.000

r = -0.001
P = 0.995

r = 0.189
P = 0.147

r = 0.935
P = 0.000

r = 0.262
P = 0.043 1

COD r = 0.358
p = 0.005

r = 0.064
p = 0.628

r = -0.254
p = 0.050

r = 0.013
p = 0.920

r = 0.787
p = 0.000

r = -0.086
p = 0.514 1

BOD5
r = 0.394
p = 0.002

r = 0.062
p = 0.638

r = -0.143
p = 0.277

r = -0.205
p = 0.116

r = 0.783
p = 0.000

r = -0.234
p = 0.072

r = 0.767
p = 0.000 1

NO3
- r = 0.609

p = 0.000
r = 0.156
p = 0.234

r = 0.112
p = 0.393

r = 0.540
p = 0.000

r = 0.235
p = 0.071

r = 0.610
p = 0.000

r = -0.221
p = 0.089

r = -0.289
p = 0.025 1

NO2
- r = 0.669

p = 0.000
r = 0.071
p = 0.589

r = -0.072
p = 0.582

r = 0.749
p = 0.000

r = 0.307
p = 0.017

r = 0.731
p = 0.000

r = -0.191
p = 0.143

r = -0.323
p = 0.012

r = 0.699
p = 0.000 1

NH4
+ r = -0.272

p = 0.035
r = 0.100
p = 0.445

r = 0.146
p = 0.267

r = -0.276
p = 0.033

r = -0.281
p = 0.030

r = 0.220
p = 0.091

r = -0.346
p = 0.007

r = -0.257
p = 0.048

r = 0.433
p = 0.001

r = 0.320
p = 0.013 1

PO4
3- r = 0.195

p = 0.135
r = 0.140
p = 0.286

r = -0,248
p = 0.057

r = -0,150
p = 0.251

r = 0.716
p = 0.000

r = 0.040
p = 0.761

r = 0.854
p = 0.000

r = -0.57
p = 0.000

r = -0.064
p = 0.628

r = -0.014
p = 0.914

r = 0.452
p = 0.000 1

Table 5. Correlation between variables and the First Three Factors

Variable F1 F2 F3

T -0.772 -0.189 -0.12

pH -0.07 0.173 -0.602

EC -0.029 -0.316 0.805
Turb 0.683 0.585 -0.246

DO 0.729 -0.521 -0.181

TSS 0.721 0.504 -0.151

COD -0.632 0.698 -0.007

BOD5 -0.715 0.514 0.072
     Figure 3. Plots of PCA scores for F1 versus F2.NO3

- 0.718 0.364 0.354

NO2
- 0.783 0.448 -0.000

NH4
+ 0.089 0.670 0.446

PO4
3- -0.462 0.800 0.000

Eigenvalue 4.382 3.207 1.471

Total variance (%) 36.513 26.727 12.256

Cumulative variance (%) 36.513 63.239 75.495

     Figure 4. Plots of PCA scores for F2 versus F3.
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to each other (Table 4), their evolution is inverse to T° (negatively cor-
related with F1). Similar results were reported in study conducted by 
Soltani et al.[26]. Authors indicated a negative association of temper-
ature with the F2 axis which explains 9.25% of the total and positive 
deviation with nutrient loads, which occur more intensely in winter due 
to rainfall-runoff. The second group DO expresses the element that 
contributes to the formation of the F1 in its positive part and opposite 
to the group formed by BOD5 and COD which are negatively corre-
lated to F1. This explains the degradation of the organic matter con-
sumable of dissolved oxygen by chemical and biochemical processes. 
The F1 axis confirms the increase in turbidity in the wet season at low 
temperatures and shows that this quality parameter is an indication of 
the presence of mineral and organic particles in suspension in the 
water. From a health point of view the increase in turbidity influences 
the microbiological and chemical characteristics of the water through 
the adsorption of microorganisms or chemical particles on the sus-
pended matter and consequently makes disinfection of this water diffi-
cult[31]. F2 defines NH4

+, PO4
3-, COD, BOD5, Turb and TSS, in its 

positive part and DO in its negative part, indicating  mineral and or-
ganic pollution of domestic origin. 

Nitrogen and phosphorus represent the major plant nutrients (algae 
and phytoplankton), their presence in excess causes eutrophication of 
the aquatic environment. Results show that point (urban and industrial 
effluents) and nonpoint sources (agricultural runoff) are the main con-
tributors to organic and nutrient parameters. The result is a real degra-
dation, by increasing the opacity of the water; it indeed limits the 
amount of incident light for photosynthesis and subsequently decreases 
the amount of dissolved oxygen and increases the COD and BOD5.. 
PO4

3- participates most in the formation of the F2 axis with r = 0.88, 
this is indicative of the extent of reservoir water eutrophication as re-
ported by Bouzid-Lagha and Djelita[45] when studying the eutrophica-
tion of the Hammam Boughrara Reservoir (northwest of Algeria) using 
PCA method. The two variables EC and pH show weak correlations 
with the F1 and F2 axes and are defined by the main component 3, 
which reveals mineralization. 

Therefore, the PCA analysis indicates two pollution axes F1 and F2 
of anthropogenic origin (domestic, agricultural and industrial) that al-
lowed to estimate the load of the  water samples in nutrients, TSS and 
DO rate, in accordance with previous observations reported by Jurado 
et al.[46].

The projection on the axis F2-F3 confirms that the turbidity is most 
correlated to all the other parameters analyzed except EC and pH. 

Thus, developing a predictive relationship of the turbidity using mathe-
matical models of simulation is crucial to understand variations on wa-
ter quality in different seasons and to estimate solutions and effective 
management practices.

3.3. Turbidity prediction results using the MLR model
To model influence and correlation of the investigated water quality 

parameters on the turbidity, different combinations of water quality pa-
rameters were used in the MLR prediction model. By first using the 
4 parameters that have significant correlation according to the correla-
tion matrix (Equation 2 in Table 6), then with the all water quality pa-
rameters (Equation 3 in Table 6) and then by including the statistically 
significant variables confirmed by the ANOVA tests (Equation 4). The 
summary of the models is presented in Table 6.

The validity of the MLR formulations is tested by the p-value at sig-
nificance thresholds α= 0.05, by the coefficient of determination R2 
and the plots of residual values. As can be seen from Table 6, the best 
results for the prediction of Turb are represented in equation 3 (model 
2) and 4 (model 3) with high values of R2 (93.20 and 92.20 re-
spectively) proving that both models are highly correlated. In addition, 
the associated adj R2 (91.64, 91.31 for models 2 and 3 respectively) 
were close to the R2 confirming the good correlation between response 
(Turb) and the fitted models. However, model 3 presented the highest 
predicted R2 (89.94%) which means that the predicted turbidity could 
be well calculated by the model. The very low probability value (p = 
0.000000), confirmed by the ANOVA tests (Table 7), demonstrated 
that model 3 is highly significant over the other models and is the best 
MLR model to be used. Therefore, the variables that most contributed 
in the prediction of turbidity in Cheurfa dam and were found to be 
statistically significant (smaller p-values) as being clear in Table 7 are: 
DO, TSS, COD, EC, NO2

-, NO3
-. The significant predictive equation is 

stated below:





 (4)

Our results are similar to those of Miljojkovic et al.[5] who showed 
that total suspended solid and dissolved oxygen saturation have the 
greatest effect on Turb prediction with high precision. Ayanshola et al. 
[47] adopted MLR model to predict the treated water turbidity from 
rainfall, coagulant dosage retention time and raw water turbidity and 
achieved best results with R2 value of 0.731. Amanda et al.[48] applied 

Input model parameters R2 

(%)
Adjusted R2 

(%)
Predicted R2 

(%) MLR model equation p-

1- T°, TSS, NO2
-, NO3

- 89.49 88.73 87.68        
 

    (2) 0.000000

2: All parameters 93.20 91.64 89.75
          

     
 



 
 


   (3) 0.00000

3: DO, TSS, COD, 
EC, NO2

-, NO3
- 92.20 91.31 89.94        

 
 

               (4) 0.000000

Table 6. Linear Regression Analysis—Summary of the Models and Model Equations
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simple linear regression to predict total suspended solids (TSS) as a 
function of turbidity, analysis of variance (ANOVA) showed that tur-
bidity has a significant linear relationship with TSS concentration 
(p-value ≤ 0.01). García et al.[49], confirmed that turbidity can be 
successfully predicted from  ammonium, conductivity, dissolved oxy-
gen, pH and temperature values by employing MLR model. According 
to Lee et al.[50], Turb is not a concentration of contaminants but a 
property that represents the “sum” of all other contaminants, with the 
advantage that it can be easily implemented and measurable than COD, 
NO2

-, NO3
-, DO and EC. This method seeks to explain and predict the 

phenomenon (y) as a function of the explanatory variables (x), based 
on their effect on Turb. 

3.4. Model adequacy checking: Residual analysis
In a linear regression model, a diagnostic step of the residual graphs 

should not be discounted. The graph versus fits represents the esti-
mated residuals against the values predicted by the model; it is very 
important to check that the residuals are centered on zero. This graph 
is based on all samples compared by the variance analysis; they have 
the same distribution of residuals and show no different structure along 

the ordinate axis or any particular shape. According to the graph 
(Figure 5), the residuals are homogeneously distributed around zero. 
The verification of the normality of the residuals is done by studying 
their distribution by a simple Henry's line (Normal Probability Plot). 
According to this linear plot, the residuals are also normally distributed 
around zero.

4. Conclusions

In the framework of the ecosystem protection, the current study was 
carried out on assessing and predicting water quality of the Cheurfa 
dam. it has been shown that the surface waters present  a strong miner-
alization and  low contents of DO in the summer period. This phenom-
enon is on the other hand rare during the rainy season at the time of 
an algal bloom. Recorded PO4

3- and NH4
+ contents increase especially 

during the sowing season (use of agricultural fertilizers) and from do-
mestic discharges containing detergents. These nutrients participate 
largely in the eutrophication of the aquatic environment by influencing 
the transparency of the water which was confirmed by the high Turb 
values recorded. In the present study, analysis of turbidity gives a con-

Table 7. ANOVA Results for Regression Model 3

Source of variance Degrees of
freedom Sum of squares Mean square F-value P-value Coefficient

estimate

Regression 6 40344.8 6724.1 104.358 0,000000 -6.5503

DO 1 2700.7 409.7 6.359 0,014720 1.9126

TSS 1 35591.3 10769.4 167.139 0,000000 0.9674

COD 1 1112.9 659.9 10.241 0,002321 0.2388

NO2
- 1 522.5 633.3 9.828 0,002802 22.4657

EC 1 346.0 262.0 4.066 0,048839 -0.0073

NO3
- 1 345.4 261.1 6.107 0,029740 -0.1980

R2 = 0.9220, Adjusted R2 = 0.9131,   Predicted R2 = 0.8994 , Standard deviation S =  8.02705

Figure 5. Normal plot of the residuals.
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crete insight into the dam water pollution, high Turb indicates strong 
health risks. At the same time, the statistical study shows the visibility 
of the parameters responsible on water quality changes and gives in-
sights to control the various sources of pollution. Using PCA principal 
component analysis, the 12 studied variables reduce to only one that 
is Turb, the controlling element of the two pollution axes F1 and F2. 
Then, a new equation with only 6 relevant parameters is proposed to 
simulate turbidity of the Cheurfa dam through the MLR with a high 
coefficient of determination (R2 = 0.9220), a significant p value << 
0.05 and a good distribution of residuals around the mean. 
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