• 제목/요약/키워드: Multiple Imputation

검색결과 61건 처리시간 0.026초

Survival Analysis of Gastric Cancer Patients with Incomplete Data

  • Moghimbeigi, Abbas;Tapak, Lily;Roshanaei, Ghodaratolla;Mahjub, Hossein
    • Journal of Gastric Cancer
    • /
    • 제14권4호
    • /
    • pp.259-265
    • /
    • 2014
  • Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to analyze the survival of patients with incomplete registered data by using imputation methods. Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using a Cox regression model and the results were compared. Results: The mean patient survival time after diagnosis was $49.1{\pm}4.4$ months. In the complete case analysis, which used information from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery hazard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information criteria values correlated with MI (-821.236 and -827.866, respectively). Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when compared with the expectation maximization algorithm and regression simple imputation methods.

A Modified Grey-Based k-NN Approach for Treatment of Missing Value

  • Chun, Young-M.;Lee, Joon-W.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.421-436
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the deng's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(Wen's GRG & weighted mean) method is the best of any other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.

A Study on the Treatment of Missing Value using Grey Relational Grade and k-NN Approach

  • 천영민;정성석
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 PROCEEDINGS OF JOINT CONFERENCEOF KDISS AND KDAS
    • /
    • pp.55-62
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the dong's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute a missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(wen's GRG & weighted mean) method is the best of my other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

Frequency Matrix 기법을 이용한 결측치 자료로부터의 개인신용예측 (Predicting Personal Credit Rating with Incomplete Data Sets Using Frequency Matrix technique)

  • 배재권;김진화;황국재
    • Journal of Information Technology Applications and Management
    • /
    • 제13권4호
    • /
    • pp.273-290
    • /
    • 2006
  • This study suggests a frequency matrix technique to predict personal credit rate more efficiently using incomplete data sets. At first this study test on multiple discriminant analysis and logistic regression analysis for predicting personal credit rate with incomplete data sets. Missing values are predicted with mean imputation method and regression imputation method here. An artificial neural network and frequency matrix technique are also tested on their performance in predicting personal credit rating. A data set of 8,234 customers in 2004 on personal credit information of Bank A are collected for the test. The performance of frequency matrix technique is compared with that of other methods. The results from the experiments show that the performance of frequency matrix technique is superior to that of all other models such as MDA-mean, Logit-mean, MDA-regression, Logit-regression, and artificial neural networks.

  • PDF

선형판별분석에서 MCMC다중대체법의 효율에 관한 연구 (A Study on the efficiency of the MCMC multiple imputation In LDA)

  • 유희경;김명철
    • 대한안전경영과학회지
    • /
    • 제11권3호
    • /
    • pp.189-198
    • /
    • 2009
  • This thesis studies two imputation methods, the MCMC method and the EM algorithm, that take care of the problem. The performance of the two methods for the linear (or quadratic) discriminant analysis are evaluated under various types of incomplete observations. Based on simulated experiments, the effect of the imputation using the EM algorithm and the MCMC method are evaluated and compared in terms of the probability of misclassification and the RMSE. This is done for the various cases of incomplete observations. The cases are differentiated by missing rates, sample sizes, and distances between two classification groups. The studies show that the probability of misclassification and the RMSE of the EM algorithm method is lower than the MCMC method. Therefore the imputation using the EM algorithm is more efficient than the MCMC method. And the probability of misclassification of the method that all vectors of observations with missing values are omitted from analysis is lower than the EM algorithm and the MCMC method when the samples size is small and the rate of missing values is extremely big.

The effect of missing levels of nesting in multilevel analysis

  • Park, Seho;Chung, Yujin
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.34.1-34.11
    • /
    • 2022
  • Multilevel analysis is an appropriate and powerful tool for analyzing hierarchical structure data widely applied from public health to genomic data. In practice, however, we may lose the information on multiple nesting levels in the multilevel analysis since data may fail to capture all levels of hierarchy, or the top or intermediate levels of hierarchy are ignored in the analysis. In this study, we consider a multilevel linear mixed effect model (LMM) with single imputation that can involve all data hierarchy levels in the presence of missing top or intermediate-level clusters. We evaluate and compare the performance of a multilevel LMM with single imputation with other models ignoring the data hierarchy or missing intermediate-level clusters. To this end, we applied a multilevel LMM with single imputation and other models to hierarchically structured cohort data with some intermediate levels missing and to simulated data with various cluster sizes and missing rates of intermediate-level clusters. A thorough simulation study demonstrated that an LMM with single imputation estimates fixed coefficients and variance components of a multilevel model more accurately than other models ignoring data hierarchy or missing clusters in terms of mean squared error and coverage probability. In particular, when models ignoring data hierarchy or missing clusters were applied, the variance components of random effects were overestimated. We observed similar results from the analysis of hierarchically structured cohort data.

Comparison of EM and Multiple Imputation Methods with Traditional Methods in Monotone Missing Pattern

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권1호
    • /
    • pp.95-106
    • /
    • 2005
  • Complete-case analysis is easy to carry out and it may be fine with small amount of missing data. However, this method is not recommended in general because the estimates are usually biased and not efficient. There are numerous alternatives to complete-case analysis. A natural alternative procedure is available-case analysis. Available-case analysis uses all cases that contain the variables required for a specific task. The EM algorithm is a general approach for computing maximum likelihood estimates of parameters from incomplete data. These methods and multiple imputation(MI) are reviewed and the performances are compared by simulation studies in monotone missing pattern.

  • PDF

MLE for Incomplete Contingency Tables with Lagrangian Multiplier

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.919-925
    • /
    • 2006
  • Maximum likelihood estimate(MLE) is obtained from the partial log-likelihood function for the cell probabilities of two way incomplete contingency tables proposed by Chen and Fienberg(1974). The partial log-likelihood function is modified by adding lagrangian multiplier that constraints can be incorporated with. Variances of MLE estimators of population proportions are derived from the matrix of second derivatives of the loglikelihood with respect to cell probabilities. Simulation results, when data are missing at random, reveal that Complete-case(CC) analysis produces biased estimates of joint probabilities under MAR and less efficient than either MLE or MI. MLE and MI provides consistent results under either the MAR situation. MLE provides more efficient estimates of population proportions than either multiple imputation(MI) based on data augmentation or complete case analysis. The standard errors of MLE from the proposed method using lagrangian multiplier are valid and have less variation than the standard errors from MI and CC.

  • PDF

Association measure of doubly interval censored data using a Kendall's 𝜏 estimator

  • Kang, Seo-Hyun;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.151-159
    • /
    • 2021
  • In this article, our interest is to estimate the association between consecutive gap times which are subject to interval censoring. Such data are referred as doubly interval censored data (Sun, 2006). In a context of serial event, an induced dependent censoring frequently occurs, resulting in biased estimates. In this study, our goal is to propose a Kendall's 𝜏 based association measure for doubly interval censored data. For adjusting the impact of induced dependent censoring, the inverse probability censoring weighting (IPCW) technique is implemented. Furthermore, a multiple imputation technique is applied to recover unknown failure times owing to interval censoring. Simulation studies demonstrate that the suggested association estimator performs well with moderate sample sizes. The proposed method is applied to a dataset of children's dental records.