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Introduction 

A multilevel model has gained popularity as a practical and essential analysis tool in vari-
ous fields such as epidemiological research, public health research, and social or educa-
tional research [1-6]. A specific study design involving multiple levels or nested structures 
results in a hierarchical structure and accompanies the application of multilevel modeling 
[1]. Multilevel data are often obtained as an incomplete dataset with missing components 
at any level of the data hierarchy. For example, in practice, a nesting of some hospitals and 
practices, which are also nested within larger health systems, can be ignored or unob-
served in the health care study [7]. 

In practice, researchers in the field ignore a hierarchy within the data and prefer an or-
dinary least square regression model (OLS) that treats all observations as if they are mea-
sured at the same level [8-12]. Alternatively, a two-level model is also commonly adopted 
by ignoring missing intermediate levels and accounting for only the top and bottom levels 
of hierarchy in multilevel data. However, the misleading hierarchy by ignoring intermedi-
ate or top levels may potentially impact the parameter estimation in multilevel analysis 
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and has gained attention among researchers in recent research [13-
17]. 

To handle the missing issues, several studies proposed imputa-
tion methods to fill in the missing and create a complete dataset 
[15-17]. However, imputation methods add more uncertainty to 
the parameter estimations and especially increase the complexity 
when the imputation is intertwined with the hierarchical structure 
of the data [15-18]. In particular, it is difficult to handle the miss-
ing when a cluster is entirely missing or the cluster size is very 
small, and especially the missing values are in the explanatory vari-
ables. Alternatively, a single imputation can be considered. It is be-
cause it handles the practical issues in multilevel imputation, is 
simple to adapt, and preserves the design hierarchy of the multilev-
el data. In this study, we consider a multilevel linear mixed effect 
model (LMM) with a single imputation that was introduced in 
Sanders’ study [19] for handling missing intermediate or top clus-
ters in multilevel data. An LMM has been widely accepted to mod-
el the hierarchical structure in multilevel data and can account for 
the correlation among units nested within clusters. The method 
uses a single imputation that replaces the missing clusters by its 
nesting lower-level unit’s measurements and considers as if each of 
the nesting lower-level unit’s measurements is a single observation 
for missing clusters. As a result, a missing intermediate-level cluster 
is filled in containing only a singleton, resulting in a complete data-
set [19]. However, to our best knowledge, no previous studies 
have examined and investigated the performance of an LMM with 
a single imputation and directly compared it with other models 
that ignore missing levels of nesting. 

This study aims to evaluate the performance of a model consid-
ering all hierarchies, such as an LMM with single imputation, in 
three-level data and demonstrate that it outperforms other models 
that do not match the hierarchy of multilevel data. To do so, we 
compare three models in three-level hierarchical data with missing 
intermediate-level clusters. The first model is an OLS regression 
model, which is a single-level model ignoring any hierarchy in the 
data and treats all observations measured at the same level. Sec-
ondly, we consider a two-level LMM considering only level-1 and 
level-3 and discarding missing intermediate levels. The third mod-
el is a three-level LMM with a single imputation that involves all 
levels of the data hierarchy, so we can assume that the multilevel 
model matches the design hierarchy in the data by filling in a miss-
ing level-2 unit. 

In this study, we apply and compare the three models to the 
Childhood to Adolescence Transition Study (CATS), a motivating 
case study of this work, in a three-level structure: school (level-3 
unit), individual (level-2 unit), and repeated measures observed 

per individual (level-1 unit) with missing level-2 and level-3 units 
[20,21]. We also conduct a thorough simulation study by compar-
ing the three models to examine the impact of ignorance of miss-
ing intermediate level on parameter estimation of three-level data 
analysis when the missing rate and the cluster sizes of level-2 and 
level-3 clusters vary. 

Methods 

Three-level linear mixed effect model 
In the context of multilevel data analysis, a LMM is considered as 
an analysis model that accounts for correlation due to the hierar-
chical structure of the data. To establish background information 
on the analysis model for hierarchical structure data, especially for 
a three-level data structure, we develop a general notation and in-
troduce a brief overview of a three-level model.  

Let i be the index of the level-3 unit with size L (i=1, …, L), j be 
the index of the level-2 unit with size Mi (j=1, …, Mi), and k be the 
index of the level-1 unit with size Nij (k=1, …, Nij). We consider a 
three-level model, where a level-1 unit is nested within a level-2 
unit that is also nested within a level-3 unit. Let yijk be the response 
variable for level-1 unit k in the level-2 unit j and level-3 unit i, xijk 
be the associated covariate variable observed at level-1, xij be the 
associated covariate variable at level-2, and xi be the associated co-
variate at level-3. Then a general three-level linear mixed effect 
model is:  

(1)
yijk = β0ij+β1ijxijk+eijk  

β0ij = α0i+α01xij+vij  

β1ij = α1i+α11xij+vʹij  
α0i = γ00+γ01xi+ui  

α1i = γ10+γ11xi+uʹi ,

where eijk~N(0, σe
2) are residuals at level-1 that are independent and 

identically distributed (iid) and capture within-cluster residual 
variations, vij=(vij,v′ij) are iid random effects at level-2 and captures 
between-cluster intercept differences at level-2, ui=(ui,u′i) are iid 
random effects at level-3 and captures between-cluster intercept 
differences at level-3. 

In this study, we assume that only the regression intercept varies 
across clusters and hence restrict our attention to a three-level ran-
dom effect model with a random intercept for each level. It is the 
simplest type of linear mixed model for multilevel study, although 
we note that an extended model including random slope can be 
considered. We revisit this in the discussion. Considering a ran-
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dom effect model with random intercepts only, α11=v′ij=γ11=u′i=0. 
Therefore, the model in Eq. (1) can be rewritten as 

(2) 
yijk=  0+ 1xi+ 2xij+ 3xijk+ui+vij+eijk ,

where β0(=γ00) is the intercept, and β1(=γ01),β2(=α01), and β3(=γ10) 
are the slope coefficients for the fixed effects at level-3, level-2, and 
level-1, respectively. Considering random intercepts only in the 
model, we assume that level-3 and level-2 residuals, ui and vij, re-
spectively, are multivariate normal with zero means and variances 
of σu

2 and σv
2, respectively, and the within-cluster residuals are nor-

mally distributed with mean zero and constant variance σe
2:  

ui~N(0, σu
2), vij~N(0, σv

2), eijk~N(0, σe
2) .

⬚⬚

The covariance structure of the response vector y=(y111, y112, …, yL, 
ML, NLM) is a block-diagonal covariance matrix given by 

with an ith block-diagonal matrix of Gi=σe
2I(ni)+ σv

2J(ni), where I(ni is 
an ni×ni identity matrix, J(ni) is an ni×ni matrix of 1s, and and 
ni=Mi×NiMi is a size of a block-diagonal matrix associates with ith 
level-3 cluster. The off-diagonal elements are zero. 

Analysis of incomplete multilevel data using single 
imputation 
To handle the missing level-2 units in a three-level hierarchical 
data, we adopt a single imputation method introduced in Sanders’ 
study [19] that replaces the missing clusters by its nesting low-
er-level unit’s measurements and considers the imputed level-2 
unit as a cluster containing a single observation. Specifically, it con-
structs imaginary level-2 clusters for level-1 measurements whose 
level-2 clusters were missing entirely. As a result, the single imputa-
tion method adds level-2 clusters as many as the number of level-1 
units directly under the missing level-2 clusters. By applying the 
method, we can have a complete three-level dataset without any 
missing clusters at level-2 units, allowing us to apply a three-level 
model. The single imputation method allows us to preserve a hier-
archical data structure in multilevel data analysis. 

The motivating case study CATS has a three-level structure with 
the components of school, individual, and its repeated measures 
per individual, and some measurements at the individual level 
(level-2; academic numeracy score at baseline) were partially not 

observed and recorded as missing in the dataset. There were 
22.4% missing academic numeracy scores at baseline at level-2, 
and they were filled in by single imputation that impute a corre-
sponding academic numeracy score measured at level-1 to handle 
the components with missingness. In other words, we treated each 
level-1 unit within a missing level-2 unit is nested in a level-2 unit 
that only contains the level-1 unit itself [19]. 

Childhood to Adolescence Transition Study 
Motivated by the case study of CATS, we focus on an analysis of 
the simulated data mimicking the CATS data [21]. The CATS is a 
longitudinal cohort study collected through multiple waves, and it 
collects mental health to investigate the effect of early depressive 
symptoms on academic outcomes in children from puberty 
through adolescence. More details about the data collection and 
study protocol can be found in Mundy et al. [20]. 

The simulated data mimicking the CATS have a three-level hier-
archical structure. Individuals are nested within schools, and re-
peated measures within individuals were collected. The data con-
sist of demographic, educational, and social outcomes as well as 
mental health outcomes for the CATS study: depressive symp-
toms, National Assessment Programme – Literacy and Numeracy 
results (NAPLAN) academic numeracy score, socio-economic 
status, age, and sex are collected for the study [21]. 

The NAPLAN numeracy score is an outcome of interest and is 
observed at level 2 at wave 1 (potential baseline) and at level 1 in 
the following waves with missing cases. As we are interested in a 
case where missingness happens at level-2 only, we discard cases 
where the NAPLAN numeracy score has missingness at level-1, 
and the size of data that we used is N = 2,592. The data are unbal-
anced as the size of level-2 differs, and the number of level-1 units 
within a level-2 unit varies across individual. The dataset has 163 
schools; 54 of 163 schools have a single individual with a single 
measurement per individual, and the other 109 schools have multi-
ple individuals with a different number of repeated measures. There 
were 1,142 individuals in the data, and 256 of 1,142 (22.4%) NA-
PLAN numeracy scores at the individual level are missing. 

Simulation data 
We conducted a simulation study to evaluate the performance of a 
three-level LMM with single imputation. In the simulation, we 
considered complete three-level data sets and incomplete data 
with various missing rates of level-2 clusters (Table 1) and com-
pared the performance of the three-level LMM with single impu-
tation with those of a single-level model and 2-level LMM. 

We generated complete data sets without missing subjected to 

G1+ +σu
2J(n1) 

GL+ +σu
2J(nL) 

Cov(y) = 
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the model in Eq. (2), where we assumed the fixed coefficients of β0 
= 0.5, β1 = β2 = β3 = 0.3, the random effects at level-2 and level-3 of 
ui~N(0, σu

2) and vij~N(0, σv
2) with σu

⬚ = 1.4 and σv
⬚ = 1, respectively, 

and eijk~N(0, σe
2) with σe

⬚ = 1.4 for i = 1, …, L, j=0, 1, …, M⬚ and k 
= 1,…, Nij. We considered various cluster sizes at each level (Table 
1). The number of level-3 clusters varied as L=30,50, and 100. For 
each level-3 cluster, we assumed M=10,30 clusters. The number of 
level-1 clusters within each level-2 cluster was randomly deter-
mined as Nij~Unif [15,40]. For all cases, the covariates were gener-
ated as xi~N(0,1), xij~exp(1)+1, and xijk~N(1,1.22). Intraclass cor-
relations were set to 0.398 and 0.602 for level-3 and level-2, respec-
tively. For each case, we generated 500 replicates. 

To evaluate the performance of the three-level LMM in the pres-
ence of missingness at the level-2 units, we generated missingness 
from each of the complete 3-level data sets (Table 1). We set the 
complete data to be missing in M level-2 clusters and its related 
variables such as xij. The missing data rate in level-2 clusters was set 
to 10, 25, 50, and 75% of M level-2 clusters. 

Results 

Childhood to Adolescence Transition Study 
We use three analysis models to determine the effect of ignorance 
of hidden levels in the hierarchically structured CATS data: (1) a 
single-level model (ordinary least square regression) that com-
pletely ignores the structure of the hierarchy and treats the data 
collected at level-1 only (M1), (2) a two-level LMM with a ran-
dom effect for school (level-3) only and ignoring an individual 
(level-2) random effect (M2), and (3) a three-level LMM with 
single imputation considering all levels of hierarchy in the CATS 
study units (M3). The LMMs we fit for M2 and M3 only have 
random intercepts, and random slopes are not considered in the 
data analysis. Tables 2 and 3 report estimates of the fixed and ran-

dom effects, respectively, across the three models.  
Table 2 presents estimated coefficients of fixed effects in each 

model, and Table 3 presents the estimated variance components of 
random effects and residuals. Note that M2 has one random effect 
at school and M3 has two random effects at school and individual. 

Based on a significance level of 5%, depressive symptoms ap-
peared to be significantly meaningful in supporting the effect of 
mental health on academic outcomes in children from puberty 
through adolescence across the three models (p < 0.001). Age and 
NAPLAN numeracy scores observed at baseline were meaningful 
covariates for explaining the relationship with academic outcome 
in addition to the mental health outcome. That is, when children 
are young, have fewer depressive symptoms, and higher NAPLAN 
numeracy scores at baseline, academic outcomes are likely to be 
higher. Noticeably, the estimated coefficients of the important co-
variates do not differ much across the three analysis models. 

Table 3 presents the estimated variance components of random 
effects and residuals in the multilevel data across the three analy-
sis models with different hierarchy levels. The estimated residual 
variance quantifies the variation within repeated measures and 
decreases when random effects are included in the analysis model 
(M2 and M3). The estimated variance components of the ran-
dom effects explain variations across schools and individuals that 
were not explained by M1, and the sum of the estimated variance 
components in M3 is larger than in M2. This implies that M3 
captures more unexplained variation in the hierarchical structure 
data, especially the variation among individuals, which cannot be 
ignorable. Hence, the analysis without accounting for the variance 
among the unobserved level of nesting units in data analysis re-
sulted in a larger estimation of the residual variance as shown in 
Table 3. It might lead to an inaccurate estimation of the total vari-
ation in the multilevel data. 

Table 1. Simulation schemes to generate complete 3-level data and incomplete data with missing in level-2 units

Complete 3-level data sets
Given level-3 cluster size L (=30, 50, 100) and level-2 cluster size M (=10, 30),
Generate level-1 cluster size Nij~Unif [15,40].
Given Nij, generate a data set (yijk,xi,xij,xijk) from the model in Eq. (2).

Incomplete 3-level data sets with missing in the level-2 units
Given each complete data set and missing rate p (=10, 25, 50, 75%).
Randomly select and discard ×  pxij’s from the complete data set.
Then an incomplete data set consists of M ×  p observations of (yijk,xi,xijk) and M ×  (1−p) observations of (yijk,xi,xij,xijk).

We note that complete 3-level data sets can be considered as the case of a 0% missing rate. In total, we considered 30 simulation scenarios (three level-3 
cluster sizes × two level-2 cluster sizes × five missing rates with a range of 0%, 10%, 25%, 50%, and 75%).
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Simulation data 
Considering 30 scenarios (Table 1), we applied a single-level mod-
el (M1) and 2-level LMM (M2) and 3-level LMM with single im-
putation (M3). M1 and M2 estimate four fixed coefficients, and 
the standard deviation σe

2 of the error term but does not estimate 
some of the variances of the random effects, while M3 estimates all 
parameters described in Eq. (2). Since M1 ignores the hierarchical 
structure of the data, it does not contain the random effect terms of 
ui and vij. M2 considers level-1 and level-3 clusters by assuming that 
level-1 units are directly connected to level-3 clusters. Therefore, 
M2 does not include the random effect term of vij. In summary, M3 
only estimates σv

2, and M2 and M3 models estimates σu
2. The esti-

mates of all fixed parameters were compared to the true values of 
the parameters used to simulate the data. In particular, we calculat-
ed the mean squared error (MSE) across 500 replications, and the 
coverage probability was estimated by the proportion of replica-
tions with 95% confidence intervals containing the true value. 

We expected that M3 performed well in the presence of unob-
served level-2 clusters, whereas M2 would poorly estimate the co-
efficient β2 of the level-2 associated covariate with missing clusters 
since M2 ignored the level-2 clusters and partially incorporated 
the date structure of level-1 and level-3 clusters. Since the M1 did 

not consider the hierarchical data structure, we expected that it 
poorly estimated β1 and β2. 

In general, the M3 performed well and better estimated the fixed 
coefficients in Eq. (2) than the M1 and M2 models. As expected, 
in particular, we observed that the M1 and M2 models poorly esti-
mated the coefficient β2 of the level-2 associated covariate with 
missing clusters. Figs. 1 and 2 show the MSEs and the coverage 
probabilities for β2, respectively, and compared those values by the 
three models. The MSEs by the M3 ranged from 0.00039 to 
0.00557, while those by the M1 and M2 were 0.0011–0.0639 and 
0.0004–0.037, respectively (Fig. 1). The coverage probabilities for 
β2 by the M3 were approximately 0.814–0.964 (Fig. 2). The M1 
and M2 models did poorly estimate β2 and their coverage proba-
bilities low as 0.27–0.406 and 0.392–0.498, respectively (Fig. 2). 
The MSEs for β2 seemed to increase with the missing rate (Fig. 1); 
however, the coverage probabilities did not change as the missing 
rate increased.  

We observed MSEs for β0, β1, and β3 similar to Fig. 1. The differ-
ences in MSEs among the three models were small, but M3 per-
formed the best overall. Moreover, MSEs tended to increase with 
missing rates. Similar to Fig. 2, the coverage probabilities for β0 and 
β1 were around 0.95 from the M3, while we observed small cover-
age probabilities from M1 (e.g., 0.06–0.302 for β1) and compara-
ble coverage probabilities from M2 (e.g., 0.926–0.96 for β1). The 
three models yielded similar coverage probabilities for β3. 

The three models contain different variance components. M3 
can estimate the three standard deviations, σu

⬚, σv
⬚ and σe

⬚. However, 
M2 does not estimate the variance σv

2 among level-2 clusters, and 
M1 can estimate the variance σe

2 among individuals but not σu
⬚ 

and σv
⬚. We expected that the M1 and M2 models could overesti-

mate variance components by failing to explain the 3-level data 
structure. 

Table 2. Estimates of coefficients for CATS data inferred by the three models: single-level model (M1), two-level LMM (M2), and three-level 
LMM (M3)

M1 M2 M3
Coef SE p-value Coef SE p-value Coef SE p-value

(Intercept) 2.789 0.225 <0.001 2.744 0.212 <0.001 2.748 0.234 <0.001
Depressive symptoma −0.043 0.013 <0.001 −0.047 0.012 <0.001 −0.048 0.010 <0.001

Agea −0.173 0.023 <0.001 −0.172 0.022 <0.001 −0.173 0.025 <0.001
Sexa 0.037 0.041 0.371 0.018 0.038 0.633 0.021 0.044 0.901
SESa 0.019 0.021 0.360 0.011 0.019 0.579 0.006 0.022 0.764

NAPLAN at baselineb 0.677 0.021 <0.001 0.675 0.019 <0.001 0.676 0.021 <0.001

CATS, Childhood to Adolescence Transition Study; SE, standard error; SES, socio-economic status; NAPLAN, National Assessment Programme – Literacy and 
Numeracy results.
aCovariate at level-1.
bCovariate at level-2.

Table 3. Estimated variance components of random effects and 
residuals for CATS data inferred by the three models: single-level 
model (M1), two-level LMM (M2), and three-level LMM (M3)

Variance component M1 M2 M3
Level 3: school - 0.216 0.137
Level 2: individual - - 0.325
Residual 1.002 0.786 0.426

CATS, Childhood to Adolescence Transition Study; LMM, linear mixed 
effect model.

5 / 11https://doi.org/10.5808/gi.22052

Genomics & Informatics 2022;20(3):e34

https://doi.org/10.5808/gi.22052


Fig. 1. The MSEs for β2, the coefficient of the level-2 associated covariate, when estimated by the single-level model (···), 2-level LMM (---), 
or 3-level LMM (–). For each plot of L (=30, 50, 100) level-3 clusters and M (=10, 30) level-2 clusters, each point represents the MSE across 
500 simulated data sets over a range of missing rates in level-2 clusters. MSE, mean squared error; LMM, linear mixed effect model.
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Figs. 3 and 4 show that the MSEs and coverage probabilities for 
σv
⬚ from M3 worsened as the missing rate increased for each case of 

L and M values. At the same missing rate, the larger value of M, the 
better the coverage. However, more level-3 clusters did not im-
prove MSE and coverage probability. This is because each level-3 
cluster contains unobserved level-2 clusters, and hence the num-
ber of unobserved level-2 clusters increases as L increases. 

We observed that the estimates for σu
⬚ and σe

⬚ from M1 were unbi-
ased with small MSEs and their coverage probabilities were close 
to the nominal level of 95% (0.918–0.96 for σu

⬚; 0.936–0.974 for 
σe

⬚). However, the coverage probabilities of M1 and M2 models 
were very low (e.g., 0–0.344 for σu

⬚ and 0–0.006 for σe
⬚ from the 

2-level model), and σu
⬚ and σe were overestimated by M1 and M2 

models (see Fig. 5 for the average estimates for σe). 

Discussion 

In this study, we investigated the effect of missing intermediate lev-
el of the hierarchical structure data with varying missing rates, as 
well as the consequence of ignorance of the level of nesting on the 
parameter estimation of multilevel analysis. Since missing level-2 
units are imputed by the nested level-1 unit’s measurement, the in-
termediate-level unit has a single observation per unit, and the data 
can be considered sparse. We compared three models with differ-
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Fig. 2. The coverage probability for β2, the coefficient of the 2-level associated covariate, when estimated by the single-level model 
(···), 2-level LMM (---), or 3-level LMM (–). For each plot of L (=30, 50, 100) level-3 clusters and M (=10, 30) level-2 clusters, each point 
represents the coverage probability across 500 simulated data sets over a range of missing rates in level-2 clusters. LMM, linear mixed effect 
model.
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Fig. 3. The MSEs for σv from the 3-level LMM (M3) when the level-3 cluster size changes as L = 30 (···), L = 50 (---), or L = 100 (–). For each 
case of M = 10 or 30 level-2 cluster sizes, 500 datasets were simulated over a range of missing rates in level-2 clusters. MSE, mean squared 
error; LMM, linear mixed effect model.

Fig. 4. The coverage probability for σv from the 3-level LMM (M3) when the level-3 cluster size changes as L = 30 (···), L = 50 (---), or L = 
100 (–). For each case of M = 10 or 30 level-2 cluster sizes, 500 datasets were simulated over a range of missing rates in level-2 clusters. 
LMM, linear mixed effect model.
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diate-level and various cluster sizes in the top- and intermedi-
ate-level clusters. We observed that the three-level LMM with sin-
gle imputation showed a better performance compared to the oth-
er two models, which ignore higher levels of nesting in terms of 
MSE and coverage. Moreover, lower-level variance components 
were overestimated, indicating that variance components are af-

fected by ignorance of the intermediate level. 
We considered a random effect model for the 2-level and 3-level 

linear mixed effect models in the simulation study and data appli-
cation for brevity, and it can be expanded to consider a random 
slope model and/or interaction terms. However, it requires cau-
tion to generalize the model analysis to be more complex because 
we have a large number of intermediate-level clusters with a single 
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Fig. 5. The average estimates for σe when estimated by the single-level model (···), 2-level LMM (---), or 3-level LMM (–). For each plot of 
L (=30, 50, 100) level-3 clusters and M (=10, 30) level-2 clusters, each point represents the mean of estimates across 500 replicates, and 
vertical lines indicate the standard errors. The true value σe is 1.4. LMM, linear mixed effect model.
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observation, and such sparse clusters might lead to biased esti-
mates in random slope estimation [22]. Also, we have incomplete 
variables for intermediate-level units. An imputation requires care-
ful caution when incomplete explanatory variables with a random 
slope and/or interaction terms exist in the model because they 
might lead to invalid estimates [10]. 

Furthermore, we used a three-level LMM with single imputa-
tion that replaces the missing by the nesting lower-level unit’s mea-
surements and considering that a single observation is measured 
per intermediate-level unit. As a future study, other imputation 
methods for multilevel data can be considered and compared their 
performances with an approach studied in this work. In practice, it 
is common that level-1 and level-2 units are both missing, and in 
such case, the imputation method, such as a multiple imputation 
handling multiple level’s missingness, should be considered. 
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