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Abstract
In this article, our interest is to estimate the association between consecutive gap times which are subject to

interval censoring. Such data are referred as doubly interval censored data (Sun, 2006). In a context of serial
event, an induced dependent censoring frequently occurs, resulting in biased estimates. In this study, our goal is
to propose a Kendall’s τ based association measure for doubly interval censored data. For adjusting the impact
of induced dependent censoring, the inverse probability censoring weighting (IPCW) technique is implemented.
Furthermore, a multiple imputation technique is applied to recover unknown failure times owing to interval
censoring. Simulation studies demonstrate that the suggested association estimator performs well with moderate
sample sizes. The proposed method is applied to a dataset of children’s dental records.

Keywords: doubly interval censored data, Kendall’s τ, induced dependent censoring, IPCW, mul-
tiple imputation

1. Introduction

There are several approaches to analyze multivariate failure times where subjects experience more
than one type of event or repeatedly same type of events. These can also be classified as either
parallel or sequential events, respectively (Cook and Lawless, 2007). While an ordering between two
events does not exist in a parallel scale context, the occurrence and timing of the initial event affect
the occurrence of the sequential event in a sequential scale.

Diverse approaches have been proposed to analyze sequential events in life history processes. A
multistate model has been frequently applied. For example, in an HIV-related study, the initial state is
an infection-free state, the intermediate state (the initial event) is HIV infection and the terminal state
(the second event) represents AIDS diagnosis, respectively. For analyzing such sequential events, two
time scales such as the gap time and the total time are imposed depending on the features of process
and the research purpose. For example, the gap time provides more suitable information to evaluate
the treatment efficacy on the duration of the second event and a semi-Markov model is applied to
investigate the effect of covariates.

Let U and T represent the times to the first and second events(U < T ), respectively. When U and
T are interval censored, the available data are composed of {(LU ,RU], (LT ,RT ]}, respectively. Then
a duration time or a gap time V = T − U between these events is also interval censored, (LV ,RV ],
where LV = LT −RU and RV = RT −LU , respectively. This data structure is denoted as doubly interval
censored data (Sun, 2006) and is presented at Figure 1. De Gruttola and Lagakos (1989) proposed
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Figure 1: Visualization of doubly interval censored data.

a nonparametric estimator of distributions of (U,V) based on the EM algorithm at discrete time sup-
ports and Kim et al. (1993) extended this method to the proportional hazard model for estimating the
effect of covariate on the duration time. Kim (2006) adopted a bivariate frailty effect under a piece-
wise constant baseline hazard model. Dejardin and Lesaffre (2013) applied a stochastic EM algorithm
by extending Pan (2001)’s approach. However, there are few studies about the association measure
for doubly interval censored data while some approaches were suggested for bivariate interval cen-
sored data where two events are observed on the parallel scale. For example, Betensky and Finkelstein
(1999) implemented a multiple imputation technique based on the nonparametric estimator of a bivari-
ate survival function. Lesaffre and Bogaerts (2008) suggested a two-stage procedure for estimating
the association. In the first stage, the joint density of log failure time is estimated with a smoothing
method based on a pair of grids and corresponding weights. At the second stage, these grids and
weights are implemented to calculate the Kendall’s τ estimate as a global association measure as well
as the cross ratio function as a local association measure. Wang and Ding (2000) also applied a two
stage estimation procedure to estimate a constant parameter α of a copula function Cα(1− F1, 1− F2)
for doubly current status data (or case I interval censored data). They showed the estimator of α has a
n1/2 convergence rate while the nonparametric estimator F̂ follows a n1/3 convergence rate. Sun et al.
(2006) extended to general bivariate interval censored data.

The Kendall’s τ is the most frequently referred association measure under bivariate survival data.
Oakes (1982, 2008) derived the estimator of Kendall’s τ for a right censored data and discussed the
consistency. Wang and Wells (2000) derived nonparametric estimators of τ under diverse censoring
schemes. Lakhal-Chaieb et al. (2009) applied the inverse probability censoring weighted (IPCW)
technique to improve Oakes’ estimator and Lakhal-Chaieb et al. (2010) extended this approach to
estimate the association between two serial gap times. Fu et al. (2016) proposed several Kendall’s τ
estimators for estimating the serial associations as the function of previous gap times in a context of
recurrent event data. Our interest is to propose an association measure of doubly interval censored data
by extending Lakhal-Chaieb et al.’s estimator. The reminder of this article is organized as follows. In
Section 2, we introduce the notations and propose the nonparametric estimator of τ for doubly interval
censored data. The simulation results are presented in Section 3 and the real data application appears
in Section 4. Section 5 contains general remarks and topics for future research.

2. Estimation of Kendall’s τττ

2.1. Kendall’s τττ

In this subsection, we briefly review the estimation of Kendall’s τ for ordinary failure times. Let
(T1i,T2i) and (T1 j,T2 j) be independent realizations from (T1,T2). Kendall’s τ is defined as

τ = Pr
(
(T1i − T1 j)(T2i − T2 j) > 0

)
− Pr

(
(T1i − T1 j)(T2i − T2 j) < 0

)
, (2.1)
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where (T1i − T1 j)(T2i − T2 j) > 0 indicates a concordant pair and (T1i − T1 j)(T2i − T2 j) < 0 indicates
a discordant pair, respectively. Therefore, (2.1) can be defined as the difference between the concor-
dance fraction and the discordance one. In addiyion, τ has a value with a range [−1, 1] and becomes
zero if T1 and T2 are independent. For the complete data case, Kendall’s τ can be estimated by

τ̂ =

(
n
2

)−1 ∑
1≤i< j≤n

ai jbi j,

where ai j = 1 if T1i > T1 j; ai j = −1 if T1i < T1 j and bi j = 1 if T2i > T2 j and bi j = −1 if T2i < T2 j.
Then the score, ai jbi j = 1 if (T1i − T1 j)(T2i − T2 j) > 0 and −1 if (T1i − T1 j)(T2i − T2 j) < 0.

Under a right censoring with parallel scale, the observed data on the ith subject are (X1i, X2i, δ1i, δ2i),
where X1i = T1i ∧ C1i and X2i = T2i ∧ C2i with censoring times C1i and C2i and δ1i = I(T1i ≤ C1i)
and δ2i = I(T2i ≤ C2i) are the censoring indicators, respectively. Under independent censoring, Oakes
(1982) suggested the following estimator

τ̂O =

(
n
2

)−1 ∑
1≤i< j≤n

Ri jai jbi j, (2.2)

where Ri j is an indicator of the (i, j) pair being comparable, that is, Ri j = I(X̃i j
1 < C̃i j

1 , X̃
i j
2 < C̃i j

2 ) with
X̃i j

1 = min(X1i, X1 j), X̃
i j
2 = min(X2i, X2 j), C̃

i j
1 = min(C1i,C1 j) and C̃i j

2 = min(C2i,C2 j). However, (2.2)
results in biased estimate when τ is not zero. To adjust for bias, Lakhal-Chaieb et al. (2009) proposed
an estimator based on the inverse probability of censoring weights (IPCW) as follows,

τw =

(
n
2

)−1 ∑
1≤i< j≤n

Ri jai jbi j

p̂2
i j

, (2.3)

where p̂i j is the estimate of pi j = P(C1 > Xi j,C2 > Yi j|Xi j,Yi j). They also discussed the modified
versions of (2.3) under several censoring patterns of C1 and C2 and compared the simulation results
with other estimators.

For serial event times (T1i < T2i), define Ci as a censoring time with a survival distribution G. Set
Ũi = T̃1i, Ṽi = T̃2i − T̃1i, δ1i = I(Ũi < Ci) and δ2i = I(Ũi + Ṽi < Ci), where T̃1i = min(T1i,Ci) and
T̃2i = min(T2i,Ci). When T2i is censored by Ci, Ṽi is associated with both Ũi and Ci, causing the late
occurrence of the first event to have s greater chance for the sequential event to be censored, which is
referred to as an induced dependent censoring. Therefore, the earlier the first event occurs, the greater
the chance of observing the second event. Similarly, the late occurrence of the first event is inclined
to be censored and the corresponding information cannot be reflected to the estimation procedure. In
order to adjust such biased sampling, a following IPCW technique is applied (Lakhal-Chaieb et al.,
2010).

Define Ṽi j = min(Ṽi, Ṽ j). Then the conditional probability of a pair being comparable is

pi j = P
(
Ci > Ũi + Ṽi j,C j > Ũ j + Ṽi j|Ũi, Ũ j, Ṽi j

)
= G

(
Ũi + Ṽi j

)
×G

(
Ũ j + Ṽi j

)
,

which is estimated by p̂i j = Ĝ(Ui + Ṽi j)Ĝ(U j + Ṽi j) and Ĝ is the Kaplan-Meier estimator based on
{Ũi + Ṽi, 1 − δ1iδ2i}.

τ̂w =

 ∑
1≤i< j≤n

Li j

p̂i j


−1 ∑

1≤i< j≤n

Li jai jbi j

p̂i j
, (2.4)

where Li j = I(Ci > U1i + Ṽi j,C j > U1 j + Ṽi j).



154 Seo-Hyun Kang, Yang-Jin Kim

2.2. Estimation with doubly interval censored data

Returning to doubly-interval censored data, instead of observing two sequential event times (U,T ),
observable data are composed of {(LU ,RU], (LT ,RT ], δU , δT }, where δU = I(RU < ∞) and δT = I(RT <
∞). Thus, a gap time V = T−U is also interval censored, (LV ,RV ], where LV = LT−RU ,RV = RT−LU .
δU = 0 implies that the first event is right censored at LU and thus RU = LT = RT = ∞ and LV =

0,RV = ∞. When δT = 0, the sequential second event is censored at LT and the gap time is also right
censored with (LV ,RV ) = (LT − RU ,∞). To estimate the association between interval censored gap
times (U,V) , the IPCW is applied to the simulated failure times sampled from a multiple imputation
technique as follows,

(i) Estimate a nonparametric estimator of a censoring distribution, Ĝ with (C̃i, 1−δyi), where C̃i = LU

for δU = 0, C̃i = LT and δU = 1, δT = 0 and C̃i = RT for δU = δT = 1.

(ii) Estimate the nonparametric estimator of (U,V), f̂ (u) and ŵ(v) by applying the self-consistency
algorithm (Lagakos and Gruttola, 1989, Sun, 2006) as follows,

(ii-a) Set u1 < u2 < · · · < ur for the possible mass points of the U
′

i s and v1 < v2 < · · · < vs for
the mass points of V

′

i s. Then define f j = Pr(U = u j), j = 1, . . . , r and wh = Pr(V = vh), h =

1, . . . , s. Here
∑r

j=1 f j = 1 and
∑s

h=1 wh = 1.
(ii-b) Define αi jh = I(LUi < u j ≤ RUi, LTi < u j + vh ≤ RTi), j = 1, . . . , r, h = 1, . . . , s. Then the full

likelihood is expressed as

L f =

n∏
i=1

r∑
j=1

s∑
h=1

αi jh f jwh.

(ii-c) Define Ii jh = E[I(Ui = u j,Ti = u j + vh)|w, f ] as the conditional expectation of the first
event Ui = u j and the second event Ti = u j + vh given w and f . However, this quantity is
unavailable under interval censoring. By adopting the EM algorithm, iterate between (2.5)
and (2.6) until convergence is reached.

Ĩi jh =
αi jh f jwh∑r

j′=1

∑s
h′=1 αi j′h′ f j′wh′

, (2.5)

f̂ j =
1
n

n∑
i=1

s∑
h=1

Ĩi jh, ŵh =
1
n

n∑
i=1

r∑
j=1

Ĩi jh. (2.6)

The derivation of (2.5) is an extension of the self-consistency algorithm to doubly interval
censored data.

(iii) Generate M sets composing of n pairs of (Ũk
i , Ṽ

k
i ), i = 1, . . . , n; k = 1, . . . ,M from the estimated

distributions f̂ , ŵ obtained at (ii). In more detail, for the subject with δUi = 0, Ũk
i is set to LUi. In

addition, when (δUi, δTi) = (1, 0), Ṽk
i is set to LTi − RUi.

(iv) For k = 1, . . . ,M, we obtain τ̂k
w by applying (2.4) with (Uk

i ,V
k
i )n

i=1. The variance of the estimates,
Var(τ̂k

w) is obtained with a bootstrap procedure with B = 20

(v) With τ̂k
w,Var(τ̂k

w), (k = 1, . . . ,M), the final estimates are obtained by

τ̄w =
1
M

M∑
k=1

τ̂k
w, Var (τ̄w) =

M∑
k=1

1
M

Var
(
τ̂k

w

)
+

1
M − 1

M∑
k=1

(
τ̂

j
w − τ̄w

)2
(
1 +

1
M

)
. (2.7)
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Table 1: Simulation result of τw and τ0 with (c f1, c f2) = (5%,10%)

n Imputation M τ τ̄w SEE SDE CP τ̄0

50

5

0.200 0.200 0.098 0.097 0.947 0.157
0.500 0.482 0.082 0.082 0.947 0.404
0.666 0.653 0.063 0.061 0.956 0.563
0.800 0.775 0.049 0.042 0.975 0.683

10

0.200 0.189 0.105 0.109 0.920 0.152
0.500 0.486 0.087 0.081 0.960 0.407
0.666 0.648 0.069 0.065 0.953 0.553
0.800 0.773 0.050 0.044 0.980 0.682

100

5

0.200 0.192 0.069 0.068 0.940 0.168
0.500 0.491 0.057 0.054 0.950 0.417
0.666 0.657 0.044 0.041 0.953 0.560
0.800 0.779 0.033 0.032 0.950 0.703

10

0.200 0.192 0.073 0.069 0.940 0.156
0.500 0.493 0.059 0.055 0.966 0.413
0.666 0.652 0.047 0.047 0.965 0.559
0.800 0.782 0.032 0.030 0.980 0.695

200

5

0.200 0.198 0.048 0.044 0.970 0.161
0.500 0.495 0.039 0.036 0.966 0.420
0.666 0.658 0.031 0.030 0.956 0.540
0.800 0.782 0.020 0.020 0.950 0.697

10

0.200 0.198 0.050 0.050 0.940 0.161
0.500 0.493 0.041 0.040 0.953 0.418
0.666 0.656 0.032 0.031 0.975 0.558
0.800 0.782 0.020 0.020 0.960 0.697

3. Simulation

In this section, we perform a simulation study to evaluate the proposed method and compare the naive
estimator (τ̄0) which ignores the induced dependent censoring. three hundred datasets are generated
with sample sizes n = 50, 100 and 200 and four values τ = 0.2, 0.5, 0.66, 0.80. For generating corre-
lated pairs (U,V), a Clayton copula model is applied. The censoring variable C is generated from an
exponential distribution with the parameter controlling the censoring fractions c f1 = P(C < U) and
c f2 = P(C < U + V). Tables 1–3 show the simulation results for three censoring cases; the estimates,
SEE(standard error based on (6)), SDE(standard deviation of estimates), CP(95 empirical coverage
rate of τ̄w) and the estimates of τ̄0 at (c f1, c f2) = (5%, 10%), (10%, 25%), and (25%, 45%). As ex-
pected, τ̄w outperforms τ̄0 which is underestimated under all the conditions. The bootstrap estimator
for the standard error of (τ̄w) provides a suitable result by comparing the empirical one and satisfying
95% coverage rates. The influence of the imputation numbers appears to be negligible by showing
similar results. However, the effect of censoring rate seems to be significant. As the censoring rate
(Table 3) increases, the suggested estimates show underestimated values and unstable empirical cov-
erage rates. Furthermore, τ̄0 indicates more seriously biased results in the heavy censoring case.

4. Real data analysis

In this section, we analyzed dental data from 500 children’s teeth eruption time and caries time (Bo-
gaerts et al. 2017). Annual dental examinations were performed by dentists and teeth conditions such
as plaque status, eruption times and caries time were recorded. In this analysis, our main interest was
to check the association between the eruption time (U) and the duration time to cariese (T −U) of four
molars (16, 26, 36, 46th tooth). However, instead of the exact timings, the eruption time was either
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Table 2: Simulation result of τw and τ0 with (c f1, c f2) = (10%,25%)

n Imputation M τ τ̄w SEE SDE CP τ̄0

50

5

0.200 0.190 0.112 0.111 0.933 0.129
0.500 0.485 0.093 0.092 0.970 0.371
0.666 0.641 0.074 0.068 0.970 0.502
0.800 0.756 0.059 0.053 0.980 0.597

10

0.200 0.200 0.111 0.113 0.933 0.150
0.500 0.478 0.094 0.088 0.970 0.370
0.666 0.647 0.073 0.067 0.966 0.576
0.800 0.764 0.051 0.048 0.970 0.609

100

5

0.200 0.192 0.076 0.074 0.950 0.123
0.500 0.489 0.064 0.061 0.950 0.373
0.666 0.645 0.050 0.046 0.960 0.503
0.800 0.781 0.032 0.031 0.940 0.697

10

0.200 0.191 0.079 0.071 0.953 0.137
0.500 0.483 0.065 0.063 0.953 0.365
0.666 0.648 0.050 0.047 0.965 0.501
0.800 0.769 0.037 0.035 0.930 0.617

200

5

0.200 0.197 0.054 0.053 0.943 0.137
0.500 0.483 0.045 0.045 0.960 0.367
0.666 0.655 0.033 0.036 0.940 0.503
0.800 0.784 0.022 0.020 0.955 0.696

10

0.200 0.192 0.053 0.052 0.953 0.136
0.500 0.484 0.044 0.042 0.953 0.365
0.666 0.648 0.033 0.031 0.965 0.501
0.800 0.774 0.025 0.022 0.920 0.614

Table 3: Simulation result of τw and τ0 with (c f1, c f2) = (25%,45%)

n Imputation M τ τ̄w SEE SDE CP τ̄0

50

5

0.200 0.163 0.130 0.106 0.970 0.109
0.500 0.448 0.102 0.100 0.965 0.301
0.666 0.604 0.094 0.081 0.960 0.441
0.800 0.751 0.073 0.052 0.980 0.542

10

0.200 0.162 0.134 0.111 0.990 0.098
0.500 0.469 0.114 0.100 0.970 0.327
0.666 0.633 0.092 0.072 0.980 0.447
0.800 0.742 0.074 0.053 0.980 0.551

100

5

0.200 0.181 0.099 0.094 0.970 0.115
0.500 0.442 0.079 0.070 0.970 0.295
0.666 0.615 0.062 0.053 0.980 0.439
0.800 0.747 0.050 0.039 0.890 0.544

10

0.200 0.160 0.093 0.094 0.930 0.090
0.500 0.453 0.072 0.078 0.950 0.313
0.666 0.620 0.058 0.061 0.965 0.446
0.800 0.746 0.037 0.048 0.920 0.552

200

5

0.200 0.174 0.060 0.050 0.970 0.110
0.500 0.458 0.052 0.043 0.980 0.312
0.666 0.621 0.046 0.038 0.970 0.437
0.800 0.785 0.037 0.027 0.980 0.548

10

0.200 0.176 0.068 0.059 0.970 0.110
0.500 0.460 0.062 0.056 0.990 0.313
0.666 0.617 0.050 0.045 0.960 0.434
0.800 0.758 0.032 0.027 0.980 0.548
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Figure 2: Rectangle plots for eruption time and gap time to caries of molar 16,26,36, and 46 (Selected samples).
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Figure 3: Rectangle plots for eruption time and caries time of molar 16, 26, 36, and 46 (Selected samples).

left censored (0, LU) or interval censored (LU ,RU) and caries time is either interval censored (LT ,RT )
or right censored (RT ,∞). According to the American Dental Association, permanent tooth eruption
occurs at around 6−7 years. Therefore, the left bound of the left censored eruption time is replaced
with 6.0 year. Figure 2 shows the rectangular plot of the interval censored eruption time and gap time
to caries for the randomly selected twenty children’s four teeth and Figure 3 shows the eruption time
and time to caries for the same children in Figure 1. To check the variability of estimates under dif-
ferent imputation numbers, three numbers (M=10,20,40)were applied. Table 4 shows the estimates,
standard errors and p-values for H0 : τ = 0 based on the unweighted τ0 (without IPCW) and weighted
τw (IPCW). According to the results, all estimates are negative which means that the children with
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Table 4: Dental data: τ between U and V

Estimator tooth 16 tooth 26 tooth 36 tooth46
Est(SE, p-value) Est(SE, p-value) Est(SE, p-value) Est(SE, p-value)

τ0(M = 10) −0.062(0.046, 0.177) −0.078(0.041, 0.057) −0.046(0.048, 0.264) −0.097(0.044, 0.027)
τ0(M = 20) −0.068(0.044, 0.122) −0.080(0.046, 0.082) −0.045(0.047, 0.276) −0.093(0.043, 0.030)
τ0(M = 40) −0.063(0.044, 0.152) −0.076(0.044, 0.084) −0.048(0.043 ,0.274) −0.091(0.042, 0.031)
τw(m = 10) −0.231(0.276, 0.402) −0.215(0.080, 0.007) −0.200(0.194, 0.303) −0.201(0.129, 0.119)
τw(m = 20) −0.203(0.234, 0.385) −0.198(0.111, 0.074) −0.161(0.175, 0.356) −0.216(0.123, 0.079)
τw(m = 40) −0.156(0.293, 0.594) −0.200(0.117, 0.087) −0.168(0.201, 0.403) −0.221(0.131, 0.091)

early eruption time tend to take a longer time to caries. τ̄w are insignificant for 16 and 36 molars
but significant at 26 and 46 molars at 10% significance level. However, τ̄w and τ̄0 showed somewhat
different values at four molars. While the unweighted one have smaller estimates and standard errors
but shows stable values irrespective of M values, τ̄Ws gives larger values and standard errors.

5. Discussion

In this paper, a natural extension of Kendall’s τ statistic was proposed to estimate the association of
doubly interval censored data. In parallel time scales, there are several methods for estimating the
association of correlated failures. However, in many studies of life history processes, interest lies in
the correlation between two consecutive events. For example, the occurrence of disease and death are
intermediate and terminal events where the gap time between these two events is dealt using a semi-
Markov model. However, it may not be plausible to assume that all subjects have the same chance
to observe even when the length of follow up is independent of the event process. According to the
simulation result, the ignorance of dependent censoring owing to the second event brings in biased
result even under light right censoring case. The proposed estimate based on the IPCW shows good
performance under light censoring rate but is underestimated at heavy censoring.

If a covariate is available, it may be of scientific interest to understand how the association changes
with covariates. Furthermore, when such an association varies over time, a suitable measure such as
the cross ratio function can be applied. Recently, Hu et al. (2011, 2019) considered a proportional
cross ratio model to reflect both time dependent association and covariate effect simultaneously and
analyzed the association between age at menopause and and age at menarche which are sequential
events controlled by right censoring. We have extended their approach to doubly interval censored
data as a related study (Lee and Kim, 2020). As another future study, the reviewer suggested a Frank
copula reflecting the negative association which is commonly occurred. We have also considered this
issue by incorporating with real examples and diverse simulation studies in another project.
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