• Title/Summary/Keyword: Multiple Correction Combination

Search Result 10, Processing Time 0.022 seconds

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Reliability Analysis of Interleaved Memory with a Scrubbing Technique (인터리빙 구조를 갖는 메모리의 스크러빙 기법 적용에 따른 신뢰도 해석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2014
  • Soft errors in memory devices that caused by radiation are the main threat from a reliability point of view. This threat can be commonly overcome with the combination of SEC (Single-Error Correction) codes and scrubbing technique. The interleaving architecture can give memory devices the ability of tolerating these soft errors, especially against multiple-bit soft errors. And the interleaving distance plays a key role in building the tolerance against multiple-bit soft errors. This paper proposes a reliability model of an interleaved memory device which suffers from multiple-bit soft errors and are protected by a combination of SEC code and scrubbing. The proposed model shows how the interleaving distance works to improve the reliability and can be used to make a decision in determining optimal scrubbing technique to meet the demands in reliability.

Hangul Input Method for Small Electronic Networking Devices (소형 정보통신 단말기를 위한 한글 입력 방법)

  • Kang Seung-Shik;Hahn Kwang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.287-295
    • /
    • 2005
  • For a quick and easy way of writing Hangul in hand-held devices, we analyzed the combination rules of Hangul alphabets that we constructed a small set of Hangul alphabets that combines a whole set of Hangul alphabets. Hangul consonants are generated from base set of consonants with function keys and vowels are constructed from eight base set of vowels by combination rules and stroke-adding rules. Especially, we adopted an easy error-correction method to resolve the inconvenience of using a delete key for vowel harmony errors. Futhermore, we diversified the input method of diphthongs for user-friendliness by minimizing the efforts of teaming vowel combination rules. We compared our method with previous methods of 'Chon-Ji-In' and 'Na-Rat-Keul' that the proposed method is better than the previous methods in input speed and error correction functionality.

  • PDF

Enhanced SBAS Integration Method Using Combination of Multiple SBAS Corrections

  • Yun, Ho;Kim, Do-Yoon;Jeon, Sang-Hoon;Park, Bynng-Woon;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • In this parer, we propose a new way of improving DGNSS service using combination of multiple SBAS information. Because SBAS uses Geostationary Earth Orbit (GEO) satellites, it has very large coverage but it can be unavailable in urban canyon because of visibility problem. R. Chen solved this problem by creating Virtual Reference Stations (VRS) using the SBAS signal [1]. VRS converts SBAS signal to RTCM signals corresponding its location, and broadcast the converted RTCM signals over the wireless internet. This method can solve the visibility problem cost effectively. Furthermore it can solve DGNSS coverage problem by creating just a transmitter instead of a reference station. Developing above method, this paper proposes the methods that integrate two or more SEAS signals into one RTCM signal and broadcast it. In Korea, MSAS signal is available even though it is not officially certified for Korean users. As a Korean own SBAS-like system, there is the internet-based KWTB (Korean WADGPS Test Bed) which we developed and released at ION GNSS 2006. As a result, virtually two different SBAS corrections are available in Korea. In this paper, we propose the integration methods for these two independent SBAS corrections and present the test results using the actual measurements from the two systems. We present the detailed algorithm for these two methods and analyze the features and performances of them. To verify the proposed methods, we conduct the experiment using the logged SBAS corrections from the two systems and the RINEX data logged at Dokdo monitoring station in Korea. The preliminary test results showed the improved performance compared to the results from two independent systems, which shows the potential of our proposed methods. In the future, the newly developed SBASs will be available and the places which can access the multiple SBAS signals will increase. At that time, the integration or combination methods of two or more SBASs will become more important. Our proposed methods can be one of the useful solutions for that. As an additional research, we need to extend this research to the system level integration such as the concept of the decentralized W ADGPS.

An Efficient Positioning Method for Multi-GNSS with Multi-SBAS

  • Park, Kwi Woo;Cho, MinGyou;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The current SBAS service does not provide a method to integrate multiple SBAS corrections. This paper proposes a positioning method to effectively integrate multiple SBAS and multiple GNSS. In the method, the final position is obtained by the weighted sum of the positions obtained from the combination of GNSS and SBAS. Since each position is independently computed and combined using flexible weights, it has a simple structure that can easily cope with various environments. In order to verify the operation and performance of the proposed method, raw measurements of GNSS and SBAS were collected using commercial receivers. The experiments using real signals show that the combined use of two SBAS corrections was more accurate by 0.05~0.4m(2dRMS) than using only one SBAS correction. To improve the position accuracy, this paper considered the integration of multi-GNSS and multi-SBAS, which was not found in other existing studies. The proposed method is expected to be a core technology for designing multi-GNSS navigation receivers considering multi-SBAS corrections. The importance of the method will be increased as KPS and KASS also available in near future.

Ambiguity Determination Technique for Multiple GPS Reference Stations using the Combination of L1/L2 Carrier Phase (L1/L2 측정치 조합을 이용한 GPS 기준국간 반송파 미지정수 결정 기법)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.705-713
    • /
    • 2011
  • In this paper, we introduce two techniques for resolving integer ambiguities between reference stations, which is one of the most important processes in Network RTK correction generation process. Each techniques uses Hatch filter and combination of L1/L2 measurements and we used simulation data and real data to evaluate performance of the techniques. For evaluating performance of each technique, we compared corrections generated from user site and Network RTK. As a result, Network RTK with the technique which uses Hatch filter improves user performance much more than single baseline RTK does. Residual of user is smaller than a half size of wavelength so it does not affect user integer ambiguity resolution, however, it contains significant bias error. On the other hand, when we used the technique which uses combination of L1/L2 measurements, residual error of user is largely reduced compared to the technique using Hatch filter.

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part2: Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (2부:모델링))

  • 금영탁;이재우;박승우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.50-54
    • /
    • 1997
  • An expert drawbead model is developed to model a cranky drawbead in the finite element analysis of stamping processes. The expert model calculates the drawbead restraining forces (DBRF's) and bead-exit thinning, which are boundary conditions. DBRF's are calculated by considering bending force, unbending force, and friction force in order. Bead-exit thinning are due to the bending and tension during the deformation. The DBFR's and thinning computed form the mathematical model for the basic beads are compared with measurements and correction factors compensating for the differences are found using the multiple linear regression method. The composition beads are assumed to be a combination of basic beads so that the DBRF's and bead-exit thinning are computed to the sum of those of basic beads.

  • PDF

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu;Park, Se-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF