• Title/Summary/Keyword: Multiple Columns

Search Result 87, Processing Time 0.024 seconds

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Design of Built-In-Self-Repair Circuit for Embedded Memory Using 2-D Spare Memory (2차원 여분 메모리를 이용한 내장메모리의 자가치유회로 설계)

  • Choi, Ho-Yong;Seo, Jung-Il;Cha, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.54-60
    • /
    • 2007
  • This paper proposes a built-in-self-repair (BISR) structure using 2-dimensional spare memory to effectively self-repair faults of an embedded memory. In case of multiple faults in the same row (column) of an embedded memory, the previous method using 1-D spare column (row) memory needs the same number of spare memory columns (rows) as the number of faults to self-repair them. while the new method using 2-D spare memory needs only one spare row (column) to self-repair them. Also, the virtual divided memory is adopted to be able to self-repair using not a full spare column memory but the only partial spare column memory corresponding to the faults. A self-repair circuit with $64\times1-bit$ core memory and $2\times8$ 2-D spare memory is designed. And the circuit includes a built-in-self-test block using the 13N March algorithm. The circuit has been implemented using the $0.25{\mu}m$ MagnaChip CMOS process and has $1.1\times0.7mm^2$ chip area with 10,658 transistors.

Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation (파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계)

  • Kim, Kyong-Hwan;Lee, Kangsu;Sohn, Jung Min;Park, Sewan;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.223-232
    • /
    • 2015
  • The present paper considers the conceptual design of floating wave-offshore wind hybrid power generation system. The worldwide demand for ocean renewable energy is increasing rapidly. Wave and offshore wind energy have been attractive among the various ocean renewable energy sources, and the site to generate electricity from wave and offshore wind accords well together. This means that a hybrid power generation system, which uses wave and offshore wind energy simultaneously has many advantages and several systems have been already developed in Western Europe. A R&D project for a 10 MW class floating wave-offshore wind hybrid power generation system has been also launched in Korea. A semi-submersible platform, which has four vertical columns at each corner of the platform to be connected with horizontal pontoons, was designed for this system considering arrangements of multiple wind turbines and wave energy converters. A mooring system and power cable were also designed based on the metocean data of installation site. In the present paper, those results are presented, and the difficulties and design method in the design of hybrid power generation system are presented.

Retention Time Prediction form Molecular Structure of Sulfur Compounds by Gas Chromatography (기체크로마토그래피에서 황화합물의 구조를 통한 용리시간 예측)

  • Kim, Young Gu;Kim, Won Ho;Pak, Hyung Suk
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.646-651
    • /
    • 1998
  • The molecular structure of sulfur compounds and the retention relationship are studied by gas chromatography. Analyzed sulfur compounds are, hydrogen sulfide, sulfur dioxide, carbon disulfide, ethyl mercaptan, dimethyl sulfide, iso-propyl mercaptan, normal propyl mercaptan, ethyl methyl sulfide, tert-butyl mercaptan, tetrahydrothiophene, thiophene, and 2-chlorothiophene. Multiple linear regression explains the retention relationship of molecular descriptors. In GC the temperature program is 30$^{\circ}C$ held for 10.5 min, and then increased to 150$^{\circ}C$ at a rate 15$^{\circ}C$/min. Predicted equation for relative retention time (RRT) using SAS program is as follows; $RRT=0.121bp+14.39dp-8.94dp^2+0.0741sqmw-35.78\; (N=8,\; R^2=0.989, \;Variance=0.175,\;F=66.21)$. RRTs are function of boiling point, the square root of molecular weight, molecular dipole moment, and boiling point effects mostly on RRT. The RRT is maximized at the molecular dipole moment of 0.805D, when using nonpolar columns. The planar and highly symmetric compounds are eluted slowly. The square, of correlation coefficient $(R^2)$ using SAS program, is 0.989, and the variance is 0.175 in training sets. For three sulfur compounds, the variance between observed RRTs and predicted RRTs is 0.432 in testing sets.

  • PDF

Principles of Simulated Moving Bed Reactor(SMBR) (Simulated Moving Bed Reactor(SMBR)의 원리)

  • Song, Jae-Ryong;Kim, Jin-Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • Simulated Moving Bed(SMB) process consists of multiple chromatographic columns, which are usually partitioned into four zones. Such a process characteristic allows a continuous binary separations those are impracticable in conventional batch chromatographic processes. Compared with batch chromatography, SMB has advantages of continuity, high purity and productivity. Various researches have been reported for the integration of reaction and recovery during process operation on the purpose of economics and effectiveness. Simulated Moving Bed Reactor(SMBR) is introduced to combine SMB as a continuous separation process and reactor. Several cases of SMBR have been reported for diverse reactions with catalytic, enzymatic and chemical reaction on ion exchange resin as main streams. With an early type of fixed bed using catalyst, SMBR has been developed as SMB using fluidized enzyme, SMB with immobilized enzyme and SMB with discrete reaction region. For simple modeling and optimization of SMBR, a method considering convection only is possible. A complex method considering axial dispersion and mass transfer resistance is needed to explain the real behavior of solutes in SMBR. By combining reaction and separation, SMBR has benefits of lower installation cost by minimizing equipment use, higher purity and yield by avoiding the equilibrium restriction in case of reversible reaction.

Experimental Assessment of Forest Soil Sensitivity to Acidification -Application of Prediction Models for Acid Neutralization Responses- (산림토양(山林土壤)의 산성화(酸性化) 민감도(敏感度)에 대(對)한 실험적(實驗的) 평가(評價)(I) -산중화(酸中和) 반응(反應) 예측모형(豫測模型)의 활용(活用)-)

  • Lee, Seung Woo;Park, Gwan Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.133-138
    • /
    • 2001
  • Increased base cation loss and Al mobilization, a consequence of soil acid neutralization responses, are common in air polluted areas showing forest decline. The prediction models of acid neutralization responses were developed by using indicators of soil acidification level(pH, and base saturation) in order to assess the forest soil sensitivity to acidification. The soil acidification level was greatest in Namsan followed by Kanghwa, Ulsan, and Hongcheon, being contrary to regional total $ANC_H$ pattern through soil columns leached with additional acid ($16.7mmol_c\;H^+/kg$), Both base exchange and Al dissolution were main acid neutralization processes in all study regions. There were low base exchange and high Al dissolution in the regions of the low total $ANC_H$. The $ANC_M$ by sulfate adsorption was greatest in Hongcheon compared with other regions even though the AN rate was very low as 6.4%. Coefficients of adjusted determination of simple and multiple regression models between soil acidification level indicators and the acid neutralization responses were more than 0.52(p<0.04) and 0.89(p<0.01), respectively. The result suggests that soil pH and base saturation are available indicators for predicting the acid neutralization responses. These prediction models could be used as an useful method to measure forest soil sensitivity to acidification.

  • PDF

Analytical Method for Determination of Laccaic Acids in Foods with HPLC-PDA and Monitoring (식품 중 락카인산 성분 분리정제를 통한 분석법 확립 및 실태조사)

  • Jae Wook Shin;Hyun Ju Lee;Eunjoo Lim;Jung Bok Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.390-401
    • /
    • 2023
  • Major components of lac coloring include laccaic acids A, B, C, and E. The Korean Food Additive Code regulates the use of lac coloring and prohibits its use in ten types of food products including natural food products. Since no commercial standards are available for laccaic acids A, B, C, and E, a standard for lac pigment itself was used to separate laccaic acids from the lac pigment molecule. A standard for each laccaic acid was then obtained by fractionation. To obtain pure lac pigment for use in food by High performance Liquid Chromatography Photo Diode Array (PDA), a C8 column yielded the best resolution among various tested columns and mobile phases. A qualitative analytical method using High Performance Liquid Chromatography (HPLC) Tandem Mass(LC-MS/MS) was developed. The conditions for fast and precise sample preparation begin with extraction using methanol and 0.3% ammonium phosphate, followed by concentration. The degree of precision observed for the analyses of ham, tomato juice and Red pepper paste was 0.3-13.1% (Relative Standard Deviation (RSD%)), degree of accuracy was 90.3-122.2% with r2=0.999 or above, and recovery rate was 91.6-114.9%. The limit of detection was 0.01-0.15 ㎍/mL, and the limits of quantitation ranged from 0.02 to 0.47 ㎍/mL. Lac pigment was not detected in 117 food products in the 10 food categories for which the use of lac pigment is banned. Multiple laccaic acids were detected in 105 food products in 6 food categories that are allowed to use lac color. Lac pigment concentrations range from 0.08 to 16.67 ㎍/mL.