• Title/Summary/Keyword: Multiobjective Optimization

Search Result 122, Processing Time 0.028 seconds

Finite Element Model Updating using Interactive Multiobjective Optimization Technique (대화식 다목적 최적화 기법을 이용한 유한요소 모델 개선)

  • 김경호;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.660-665
    • /
    • 2002
  • 일반적으로 유한요소 모델로부터 구한 해석결과는 대상 구조물의 모드 실험결과와 오차를 보인다. 이러한 오차로 인해서 유한요소 모델의 효용성에 한계가 발생하게 되면, 모델의 신뢰성을 높일 수 있도록 모델을 보정하는 절차가 필요하다. 유한요소 모델 개선은 이러한 오차를 줄이기 위해서 유한요소 모델을 변경하는 체계적인 접근법이다. 유한요소 모델에서 변경할 수 있는 매개변수의 개수는 실험결과의 개수보다 훨씬 많으므로 실험결과와 일치되는 개선된 모델의 수는 무한하다고 할 수 있다. 그러나, 개선된 유한요소 모델이 물리적 타당성을 갖도록 매개변수의 선택과 변경에 제한을 주면 초기 유한요소 모델에 비해서 실험결과와의 오차가 개선된 근사해만 존재하게 된다. 따라서, 모델 개선 과정을 통해서 구한 개선된 모델은 오차의 평가기준 또는 목적함수에 따라서 정해진 다양한 근사해 중 하나이다. 기존의 모델 개선 방법에서는 실험결과와의 오차를 나타내는 단 하나의 평가기준 또는 목적함수를 사용하고 이를 최소화하는 모델을 구한다. 최적화 결과를 얻기 전에는 사용된 평가기준이 타당한지 검토할 수 없으므로 대부분의 경우, 시행착오 방법으로 목적함수를 설정하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 다목적 최적화 개념을 이용한 평가기준을 소개하고 특히, 대화식 다목적 최적화 기법을 이용하여 유한요소 모델을 개선한다.

  • PDF

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Optimization of Vertical Roller Mill by Using Artificial Neural Networks (신경회로망을 이용한 수직형 롤러 분쇄기의 최적설계)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.813-820
    • /
    • 2010
  • The vertical roller mill is important for machine grinding and mixing various crude materials in the process of producing Portland cement. A vertical roller mill is subjected to cyclic bending stress because of the roller load. Because of the cyclic bending stress, only $4{\times}10^6-8{\times}10^6$ cycles are achieved instead of $4{\times}10^7$ cycles. The stress also causes fractures at the edge of grinding path of the outer roller. The expenses incurred in repairing the grinding path amounts to 30% of the total maintenance cost. Therefore, it is desirable to redesign the vertical roller mill in order to reduce the expenses incurred in repairing the roller. In this study, artificial neural networks (ANNs) were applied in order to solve the multiobjective optimization problem for vertical roller mills by using the function approximation ability of ANNs. To learn and generalize ANNs, the maximum and minimum stresses were estimated from the results of the finite-element analysis of a vertical roller mill. Thus, ANNs could be applied to solve the multiobjective optimization problem.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

ON OPTIMALITY AND DUALITY FOR GENERALIZED NONDIFFERENTIABLE FRACTIONAL OPTIMIZATION PROBLEMS

  • Kim, Moon-Hee;Kim, Gwi-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.139-147
    • /
    • 2010
  • A generalized nondifferentiable fractional optimization problem (GFP), which consists of a maximum objective function defined by finite fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions, is considered. Recently, Kim et al. [Journal of Optimization Theory and Applications 129 (2006), no. 1, 131-146] proved optimality theorems and duality theorems for a nondifferentiable multiobjective fractional programming problem (MFP), which consists of a vector-valued function whose components are fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions. In fact if $\overline{x}$ is a solution of (GFP), then $\overline{x}$ is a weakly efficient solution of (MFP), but the converse may not be true. So, it seems to be not trivial that we apply the approach of Kim et al. to (GFP). However, modifying their approach, we obtain optimality conditions and duality results for (GFP).

Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis (신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화)

  • Park, Jae-Yong;Im, Min-Kyu;Oh, Young-Kyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

A Genetic Algorithm using A Modified Order Exchange Crossover for Rural Postman Problem with Time Windows (MOX 교차 연산자를 이용한 Rural Postman Problem with Time Windows 해법)

  • Kang koung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.179-186
    • /
    • 2005
  • This paper describes a genetic algorithm and compares three crossover operators for Rural Postman Problem with Time Windows (RPPTW). The RPPTW which is a multiobjective optimization problem, is an extension of Rural Postman Problem(RPP) in which some service places (located at edge) require service time windows that consist of earliest time and latest time. Hence, RPM is a m띤tieect optimization Problem that has minimal routing cost being serviced within the given time at each service Place. To solve the RPPTW which is a multiobjective optimization problem, we obtain a Pareto-optimal set that the superiority of each objective can not be compared. This Paper performs experiments using three crossovers for 12 randomly generated test problems and compares the results. The crossovers using in this Paper are Partially Matched Exchange(PMX) Order Exchange(OX), and Modified Order Exchange(MOX) which is proposed in this paper. For each test problem, the results show the efficacy of MOX method for RPPTW.

  • PDF

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.