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Abstract

This paper describes a genetic algorithm and compares three crossover operators for
Rural Postman Problem with Time Windows (RPPTW). The RPPTW which is a
multiobjective optimization problem, is an extension of Rural Postman Problem(RPP) in
which some service places (located at edge) require service time windows that consist of
earliest time and latest time. Hence, RPPTW is a multiobject optimization problem that
has minimal routing cost being serviced within the given time at each service place.

To solve the RPPTW which is a multiobjective optimization problem, we obtain a
Pareto-optimal set that the superiority of each objective can not be compared. This paper
performs experiments using three crossovers for 12 randomly generated test problems and
compares the results. The crossovers using in this paper are Partially Matched
Exchange(PMX), Order Exchange(OX), and Modified Order Exchange(MOX) which is proposed
in this paper. For each test problem, the results show the efficacy of MOX method for RPPTW.
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| . Introduction

The Rural Postman Problem with Time Windows
(RPPTW) is considered in this paper. The RPPTW
is an extension of the Rural Postman Problem(RPP)
in which some service places (located at edge)
require service time windows that consist of earliest
time and latest time(1). The RPPTW is defined as
follows. If a service man arrives at a service place
beforre the earliest time, he must wait until the
service place is ready for the service and the cost
of traveling for the traveling service man increases.
Also, it a service man arrives at a service place
after the latest time, some cost penalty would be
given to the service man from the service place.
Hence, service man would like to arrive at the
service place within the given time windows in
order to reduce his total traveling cost and total
penalty. So, the RPPTW
optimization problem.

A studty of multiobjective optimization using
genetic algorithms was proposed by Rosenberg in
1960's and Schaffer tried Vector Evaluated Genetic
Algorithm program in 1984(2).
studies of multiobjective optimization have been
applied to shortest path problem on acyclic network(3},
analysis for water quality{4], vehicle routing problem(5,
6) and so on,

The multiobjective optimization problems are
difficult to obtain the optimal solution. Single ohjective
optimization problems have a single optimal point,

is a multiobjective

In recent, the

whereas multiobjective optimization problems have
a set of optimal points known as the Pareto-optimal
set. Each point in the Pareto-optimal set is
optimal in the sense that a component of the cost
vector is nondominated by at least one of the
remaining components. The Pareto-optimal set is
defined as follows(7):

Definition 1. Inferiority

Avector u = (u, ..., U is said 1o be inferiority o v= (v, ...,
v iff uis partially less than v, i.e.,

Vi=1, .., nusviA3Ii=17 .., nuv

Definition 2. Superiority

Avector u = (u, ..., W) is said to be superiorto v = (v, ...,
vn) iff U is superior to v, i.e.,

Vi=1 ...nu=viA3i=1 .. n"uw.

Definition 3. Non-inferiority

Vector U = (U, ..., U) and v = (v, ..., v) are said to be
norrinferior to one ancther if 1 is neither inferior nor suerior
to v.

That is, Each element in the Pareto-optimal set
constitutes a non-inferior solution to the multiohjective
optimization problem.

This paper describes a genetic algorithm for the
RPPTW and compares the performances of crossovers.
In such RPPTW as Traveling Salesman Problem
(TSP), the order of strings in each chromosome is
important. Hence, we use partially matched exchange
(PMX) proposed by Goldberg and Lingle(2,8), order
exchange(OX) proposed by Davis(2,8), and modified
order exchange(MOX) proposed in this paper.

I1. Multiobjective Optimization with
Genetic Algorithms

. In recent; Genetic Algorithms (GAs) emerged as
one of the most effective and robust search
algorithms. In a single objective optimization and
search, the desired end result is a single. solution,
whereas, in a multiobjective optimization, the goal
is to find a set of solutions distributed all along the
Pareto set of the different objective functions(7]. As
GAs always work with a population of solutions
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while progressing from one generation to the other,
rather than a single solution at a time, they are
particularly attractive for multiobjective optimization
which deals with a set of Pareto solutions rather
than a single solution. Once the final Pareto set is
found, we can choose a suitable solution from this
set according to our purpose. In this paper, to
solve multiobjective optimization problem, following
two objectives are considered to obtain the
Pareto-optimal set.

- Minimizing the total routing cost,

- Minimizing the total penalty.

lll. Rural Postman Problem with Time
Windows and Objective Function

RPP is to find the shortest traveling path that
passes a set of edges of a given graph at least
once. (Figure 1) shows a traveling path of RPP. In this
(figure 1), a-a’, b-b’, c’, d-d’, and e-e” are the edges
in E'(c E) that must be passed at least once in the path.
a’~b, b"~c¢. ¢’~d, and d"~e are the paths that should be
decided in order to find the shortest traveling path.

Figure 1. The traveling path
RPPTW is an extension of the RPP in which
some service places (located at edge) require

service time windows that consist of earliest and
latest time(1).
service place before the earliest time, he must wait

If a service man arrives at a

until the service place is ready for the service and
the cost of traveling for the traveling service man
Also,
service place after the latest time,

increases. if a service man arrives at a
some cost
penalty would be given to the service man from
the service place. Hence, service man would like to
arrive at the service place within the given time
windows in order to reduce his total traveling cost
and total penalty.

The followings are parameters, an objective

function, and a fitness function for RPPTW.

Parameters:

-d o9 1 ° Cost calculated by Dijkstra algorithm
€%yl

from the second node of the i edge (€E’) of

a tour to the first node of the (i+1)* edge of

the tour (€E), where & =

1 2
€€ EV.

(e} 5 e? ) and

-C, Cost in the ith edge of the tour, where g € E'.

- & : Arrival time at the service place in the i edge of the
tour.
- : Penalty at the service place in the i edge of the tour.

- TW : Time Windows at the service place in the i edge of
the tour that consist of followings:

e; — ealiest time
W, = { I, - latest time
- C : Total routing cost

- P : Total penalty

- F(C,P) : Objective function

Objective function :
-min FC,P) = (C+P)", where m is a non-negative integer.
Subject to :
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C= -Z:l(ce*+de?’de 1 ) and P= Ep,' (2)

i i+1 1=1

where,
0, e=0a;=1
pi= ei—ai, ai<ei
a,- - li) ai > li

and n is the size of E', and if i=n, let i+1 = 1 (we
assume that the tour starts at edge 1 and ends of edge
1).

Fitness function :

F*

_ 1
= F(CP) @

IV. Genetic Algorithm

4.1 The Structure of Chromosome

An undirected graph G = (V, E) comprises a set V of
n vertices, {v}, a set E < V x V of edges connecting
vertices in V and a subset E” (< E) that is a set that
must be passed at least once.

In this paper, the chromosome consists of two
kinds of strings. One is for describing the visiting
order of the edge in E" and the other is for a set
of binary codes (0 or 1) that indicate the decoding
information. For example, assume that E' = {1,2,34,5},
where 1, 2, 3, 4 and 5 denote edges (g, a), (b, b). (¢ ¢),
(d, d). and (e, e, respectively, and 0 and 1 denote
directions of the edges. If the decoding information of an
element is 1, the direction of the tour is reverse. For
example, assume that the following describes the structure
of chromosome.

The 0 of edge 1 means that in the tour we travel
from a to a”, and the 1 of edge 3 denotes a path from
node ¢’ to ¢, because the decoding information is 1.

42 Modified OX

Crossover is an operator that exchanges some
strings in two selected chromosomes appropriately
and a pair of new chromosomes are produced.

The order of strings are important in our problem.
Hence, we use PMX proposed by Goldberg and
Lingle(2,8), OX proposed by Davis(2,8), and MOX
which has been modified from the OX.

This paper will describe MOX method only which
we propose. Both PMX and OX were described in
(2.8).

MOX builds. an
subsequence of a tour from one parent and
preserving the order and position of as many
strings as possible from the other parent. Hence,
the children can inherit larger characters from the
parents than the other methods (PMX, OX) and
the possibility of premature convergence can be

offspring by choosing a

reduced. A subsequence of a routing is selected by
choosing two random cut points, which serve as
boundaries for reordering operations.

For example, the two parents with two cut
points marked by ’|’,

p1 = (012]345]6789)

and

p2 = (987/65413210)

would produce offspring in the following way.
First, the segments between cut points are copied
into offspring:

ol = (***|345|***")
and
02 = (***|654/****).
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Next, we remove string 3, 4, and 5, which are
already in the first offspring from the sequence of
the strings in the second parent. And we get

9-8-7-6-2-1-0.

This sequence is place in the ™' positions of the
first offspring in order:

o1 = (987/345(6210).
Similarly we get the other offsping:

02 = (012(654|3789).

43 Mutations

In this paper, three mutation methods are
applied. The first is that a decoding information of
edges is flipped at the selected point marked by
'~'(mutationl). The second is that two selected
points marked by "~ are swapped (mutation2). The
last is that the substring between two cut points
marked by “|” along the length of the chromosome

is inversed (mutatiion3). These are :

mutation1. Reverse
p = (1001110011)
o = (1001010011)

mutation2. Reciprocal exchange
p = (9876543210)
o = (9876143250)

mutation3. Inversion
p = (987(6543|210)
o = (987/3456/210).

Here, the reverse method is applied to the
decoding and both the
exchange and the inversion are applied to the edge
information in the chromosome.

information, reciprocal

V. Experimental Results

The GA was programmed in MSC++ version 6.0
and tested on an IBM PC Pentium IV for 12
randomly generated problems which was generated
by the same method as (1).

(Table 1) describes the problems applied to GA.
In GA, the size of population is 100, and we
evolve the population for 100 generations. The
selection scheme in this paper is roulette wheel
method according to fitness function. Each crossover
(MOX, OX, and PMX) rate was 0.6, the mutationl
(Reverse) rate was 0.05, the mutation2 (Reciprocal
Exchange) rate was 0.04, and the mutation3
(Inversion) rate was 0.03. A Pareto-optimal set of
each generation is maintained and the final
Pareto-optimal set of the algorithm is the solution
of a problem.

Table 1. Test

Test Proble m
' b

20 17

1

2 30 13
3 40 21
4 50 16
5 20 14
6 30 14
7 40 14
8 50 38
9 20 19
10 30 12
1 40 15
12 50 47

The results are shown in (Table 2) and (Figure 2
~Figure 7). (Table 2) describes the size of Pareto-optimal



184 BE AFEEREF H303(2005. 11)

set obtained by GA according to each crossover 00 Problem 1

operator for 12 test problems and (Figure 2~Figure J ) o ox
7) describe the results of comparison of crossover ol . ox
operators (PMX, OX, and MOX). The results show ol o

that the MOX method is more efficient than the x
wl

existing PMX and OX operators for 10 test

problems except problem 1 and 8. This is because iw

e 40
the MOX can preserve the order and position of as x o
. . sof x x
many strings as possible from parents and the x Ox *
x
chromosomes in the current generation can inherit mk x x % ™
. x q&
larger characters from the chromosomes in the old 1 e o
. . . . . N 2% et X X ;
genertation than the existing crossover methods. k%] is 1) w 2 2 P %
Hence, in our GA using MOX, the possibility of Figure 2. The experimental result of problem 1
premature convergence is reduced.
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Figure 4. The experimental result of problem 5
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Figure 6. The experimental result of problem 9
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Figure 7. The experimental result of problem 11

V1. Conclusions

This paper introduces a genetic algorithm and
compares three crossovers (PMX, OX, and MOX)
for RPPTW. According to the experimental results,
we can know clearly that the proposed MOX crossover
method produces more and better Pareto-optimal
solutions than the existing PMX and OX methods
for our test problems. The comparison made on the
basis of the number of Pareto-optimal solutions
describes that the proposed MOX method produces
more in number and better results.
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