• Title/Summary/Keyword: Multiferroic

Search Result 76, Processing Time 0.026 seconds

Dielectric and Magnetic Properties of BaTiO3-LaMnO3 Composites

  • Kim, N.G.;Koo, Y.S.;Jung, J.H.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.164-166
    • /
    • 2006
  • We have investigated the dielectric and magnetic properties of ferroelectric-antiferromagnetic $BaTiO_{3}-LaMnO_{3}$ composite with changing relative mole percents. Due to high sintering temperature, i.e. $1150^{\circ}C$, the Ba ion in $BaTiO_{3}$ seems to diffuse into $LaMnO_{3}$; resulting in $BaTiO_{3}-(La,Ba)MnO_{3}$ ferroelectric-ferromagnetic composite. At room temperature, $0.9BaTiO_{3}-0.1LaMnO_{3}$ composite exhibits considerable magnetization (${\sim}0.7\;emu/g\;at\;2000\;Oe$) and low coercive field (${\sim}5\;Oe$). Also it exhibits high dielectric constant (${\sim}560$) and low loss (${\sim}0.08$) at 10 kHz. This result may imply that $BaTiO_{3}-LaMnO_{3}$ could be suitable for a low leakage multiferroic composite.

Structural and Electrical Properties of Sol-gel Derived BFO/PZT Thin Films with Variation of Solvents (솔-젤법으로 제작한 BFO/PZT 박막의 용매에 따른 구조적, 전기적 특성)

  • Cho, Chang-Hyun;Lee, Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.895-899
    • /
    • 2011
  • Multiferroic BFO/PZT(5/95) multilayer films were fabricated by spin-coating method on the Pt/Ti/$SiO_2$/Si substrate alternately using BFO and PZT(9/95) alkoxide solutions. The structural and dielectric properties were investigated with variation of the solvent and the number of coatings. All films showed the typical XRD patterns of the perovskite polycrystalline structure without presence of the second phase such as $Bi_2Fe_4O_3$. BFO/PZT multilayer thin films showed the typical dielectric relaxation properties with increase an applied frequency. The average thickness of 6-coated BFO/PZT multilayer film was about 600 nm. The dielectric properties such as dielectric constant, dielectric loss and remnant polarization were superior to those of single composition BFO film, and those values for BFO/PZT multilayer film were 1199, 0.23% and 12 ${\mu}C/cm^2$.

Multiferroic Properties of BiFeO3-$Ba(Cu_{1/3}Nb_{2/3})O_3$ Films Fabricated by Aerosol-Deposition

  • Baek, Chang-U;Ryu, Jeong-Ho;O, Nam-Geun;Park, Dong-Su;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.33.1-33.1
    • /
    • 2010
  • BiFeO3 (BFO)는 강자성과 유전체 특성을 모두 구현할 수 있는 재료로서 연구가 활발히 진행되고 있다. BFO 박막을 제조하는 방법에는 sputtering, chemical solution deposition, pulsed laser deposition methods 등이 알려져 있으나, 이러한 방법들은 근본적으로 고 진공을 사용하거나, 고온에서의 열처리, 낮은 성막 속도 등의 문제점이 있어, 상온에서 비교적 쉽게 박막을 제조할 수 있는 Aerosol deposition에 관한 관심이 증가하고 있다. 본 연구에서는 BFO의 강자성, 강유전 특성을 향상시키기 위해 Ba(Cu1/3Nb2/3)O3 (BCN)를 첨가한 Ba(Cu1/3Nb2/3)O3 (BFO-BCN) 복합재료를 합성하였다. 합성한 마이크론 크기의 입자를 사용하여 나노 결정립 크기의 Ba(Cu1/3Nb2/3)O3 (BFO-BCN) 박막을 상온에서 진공 분말 분사 공정(Aerosol-Deposition)을 이용하여 제조하고, 강자성 및 강유전성 특성을 평가하였다. Aerosol deposition방법으로 제조된 BFO-BCN박막은 BFO박막에 비해 우수한 강자성과 강유전 특성 나타내었다.

  • PDF

Stress Effects CoCr2O4 Film on MgO and MgAl2O4 Grown by RF-Sputter Process

  • Ko, Hoon;Choi, Kang-Ryong;Park, Seung-Iel;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.163-166
    • /
    • 2008
  • Multiferroic $CoCr_2O_4$ film was deposited on MgO and $MgAl_2O_4$ substrates by the rf-sputtering process. The films were prepared at an RF-magnetron sputtering power of 50 W and a pressure of 10 mtorr (20 sccm in Ar), and at substrate temperatures of $550^{\circ}C$. The crystal structure was determined to be a spinel (Fd-3m) structure by means of X-ray diffraction (XRD) with Cu $K{\yen}{\acute{a}}$ radiation. The thickness and morphology of the films were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties were measured using a Superconducting Quantum Interference Device (SQIUD) magnetometer. While the ferrimagnetic transitions were observed at about 93 K, which was determined as the Neel temperature, the magnetic properties all show different behaviors. The differences between the magnetic properties can be explained by the stress effects between $CoCr_2O_4$ and the substrates of MgO and $MgAl_2O_4$.

The Multiferroic Properties Study of YMn2-xFexO5 (x=0.00, 0.01) by Neutron Diffraction (고 분해능 중성자 회절 실험에 의한 YMn2-xFexO5 (x = 0.00, 0.01)의 다강체 특성 연구)

  • Kim, Dong-Hyun;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.183-187
    • /
    • 2007
  • Compounds of multiferroic materials $YMn_{2-x}Fe_xO_5$ (x = 0.00, 0.01) were prepared using the sol-gel method. The crystallographic, magnetic and electric properties are studied using x-ray diffraction (XRD), neutron diffraction, vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The crystalline structure of $YMn_2O_5$ was found to be orthorhombic (Pbam) at room temperature. The lattice constants of $YMn_2O_5$ were determined to be $a_0=7.275\;{\AA},\;b_0=8.487\;{\AA},\;c_0=5.674\;{\AA}$. The lattice constants not changed with Fe concentrations. Our data demonstrate the correlation of magnetic and electric properties in $YMn_2O_5$ materials.

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성)

  • Song, Jong-Han;Nam, Joong-Hee;Kang, Dae-Sik;Cho, Jung-Ho;Kim, Byung-Ik;Choi, Duck-Kyun;Chun, Myoung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.222-227
    • /
    • 2010
  • $BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.