• 제목/요약/키워드: Multidrug-resistance

검색결과 382건 처리시간 0.02초

Investigation of ${\beta}$-Lactamase-producing Multidrug-resistant Pseudomonas aeruginosa Isolated from Non-Tertiary Care Hospitals in Korea

  • Sohn, Eui-Suk;Yoo, Jeong-Sik;Lee, Jeom-Kyu;Lee, Kyeong-Min;Chung, Gyung-Tae;Shin, Eun-Shim;Han, Sun-Young;Lee, Sang-Hee;Kim, Joon;Lee, Yeong-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1733-1737
    • /
    • 2007
  • A total of 2,280 nonduplicate clinical isolates of Pseudomonas aeruginosa, obtained nationwide from Korean non-tertiary care hospitals from 2002 to 2005, were identified and their susceptibilities to aminoglycosides, antipseudomonal penicillins, carbapenems, cephalosporins, monobactams, and quinolones were studied, together with their production of ${\beta}$-lactamases. Using disk diffusion and minimum inhibitory concentration tests, it was found that 2.9% of isolates were multidrug-resistant (MDR) P. aeruginosa. An EDTA-disk synergy test, PCR amplification with specifically designed primers, and direct sequencing of the PCR products showed that the $bla_{OXA-10}$, $bla_{VIM-2}$, $bla_{OXA-2}$, $bla_{OXA-17}$, $bla_{PER-1}$, $bla_{SHV-12}$, and $bla_{IMP-1}$ genes were carried by 34.3%, 26.9%, 3.0%,3.0%, 1.5%, 1.5%, and 1.5% of 67 MDR P. aeruginosa isolates, respectively. The prevalence of MDR P. aeruginosa was three-fold higher, compared with that from the United States. More than two types of ${\beta}$-lactamase genes were carried by 10.4% of isolates. The most prevalent ${\beta}$-lactamase genes were $bla_{VIM-2}$ and $bla_{OXA-10}$. This study is the first description of MDR P. aeruginosa trom non-tertiary care hospitals in Korea and the coexistence of the $bla_{VIM-2}$, $bla_{IMP-1}$, or $bla_{PER-1} in these clinical isolates.

점액세균 Sorangium cellulosum이 생산하는 약제내성 암세포의 증식억제물질 (Isolation of Antibiotics Effective to Multidrug-Resistant Cancer Cells from Sorangium cellulosum(Myxobacteria).)

  • 안종웅;이정옥
    • 한국미생물·생명공학회지
    • /
    • 제32권1호
    • /
    • pp.47-51
    • /
    • 2004
  • 암세포가 특정 항암제에 의해 내성을 획득하면 구조가 상이한 타 항암제에도 교차내성을 나타내는 이른바 암세포의 다약제 내성이 암 화학요법에 있어서 가장 심각한 문제가 되고 있다. 본 연구에서는 다약제 내성 암세포주인 CL02 세포를 이용하여 cellulose 용해성 점액세균인 Sorangium cellulosum의 60여종의 균주를 대상으로 다약재 내성 암세포에 유효한 항암물질을 탐색하는 과정에서, 균주 JW1006의 대사산물에서 강한 증식억제 활성을 발견하고 그 활성 본체로서 macrolide계 화합물인 Disorazoles $A_1$$A_2$를 분리하였다 Disorazoles $A_1$$A_2$는 인체기원의 암세포에 대해 모두 강한 세포독성($IC_{50}$ <0.04 ng/$m\ell$)을 나타낼 뿐 아니라 다약제내성 세포주인 CL02와 cisplatin내성 세포주인 CP70에 대해서 감수성 세포주와 동일한 활성을 나타내어 다약제 내성을 극복하는 우수한 활성 물질임을 확인하였다

Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea

  • Yang, Jeong Seong;Kim, Kyung Jong;Choi, Hongjo;Lee, Seung Heon
    • Annals of Laboratory Medicine
    • /
    • 제38권6호
    • /
    • pp.563-568
    • /
    • 2018
  • Background: Delamanid, bedaquiline, and linezolid have recently been approved for the treatment of multidrug- and extensively drug-resistant (MDR and XDR, respectively) tuberculosis (TB). To use these drugs effectively, drug susceptibility tests, including rapid molecular techniques, are required for accurate diagnosis and treatment. Furthermore, mutation analyses are needed to assess the potential for resistance. We evaluated the minimum inhibitory concentrations (MICs) of these three anti-TB drugs for Korean MDR and XDR clinical strains and mutations in genes related to resistance to these drugs. Methods: MICs were determined for delamanid, bedaquiline, and linezolid using a microdilution method. The PCR products of drug resistance-related genes from 420 clinical Mycobacterium tuberculosis strains were sequenced and aligned to those of M. tuberculosis H37Rv. Results: The overall MICs for delamanid, bedaquiline, and linezolid ranged from ${\leq}0.025$ to >1.6 mg/L, ${\leq}0.0312$ to >4 mg/L, and ${\leq}0.125$ to 1 mg/L, respectively. Numerous mutations were found in drug-susceptible and -resistant strains. We did not detect specific mutations associated with resistance to bedaquiline and linezolid. However, the Gly81Ser and Gly81Asp mutations were associated with resistance to delamanid. Conclusions: We determined the MICs of three anti-TB drugs for Korean MDR and XDR strains and identified various mutations in resistance-related genes. Further studies are needed to determine the genetic mechanisms underlying resistance to these drugs.

서해안 양식패류에서 분리한 세균의 항생제 내성 특성 비교 (Comparison of Antimicrobial Resistance Characteristics of Bacteria Isolated from Cultured Shellfish on the West Coast of Korea)

  • 박보미;정연겸;황진익;김민주;오은경
    • 한국수산과학회지
    • /
    • 제55권5호
    • /
    • pp.495-504
    • /
    • 2022
  • This study examined the antimicrobials properties of bacteria using the minimum inhibitory concentration method. The bacteria were isolated from 30 shellfish (oysters and short neck clams) collected from Jawol-myeon, Ongjin-gun, Incheon and Iwon-myeon, Taean-gun, Chungcheongnam-do, on the west coast of Korea. A total of 528 bacteria were isolated from June to October 2020 and were classified into land-originating (LB; 264 strains) and marine-originating (MB; 264 strains) bacterial groups. Of the LB strains, 10 genera were identified, of which nine were Enterobacteriaceae. All MB strains were identified as species of the genus Vibrio spp.. Antimicrobial resistance to one or more agents was observed in 77.3% of the LB strains, and 90-100% of them were resistant to ampicillin Escherichia spp. were not resistant to ampicillin. The overall multidrug resistance rate of the LB strains was 49.2%, with 85 resistance patterns. Antimicrobial resistance to one or more agents was observed in 98.1% of the MB strains, because most of the V. alginolyticus and V. parahaemolyticus strains were resistant to ampicillin. The overall multidrug resistance rate of the MB strains was 1.9% with 19 resistance patterns.

Complete Genome Sequence of Salmonella enterica Serovar Pullorum Multidrug Resistance Strain S06004 from China

  • Li, Qiuchun;Hu, Yachen;Wu, Yinfei;Wang, Xiaochun;Xie, Xiaolei;Tao, Mingxin;Yin, Junlei;Lin, Zhijie;Jiao, Yang;Xu, Lijuan;Jiao, Xinan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.606-611
    • /
    • 2015
  • As Salmonella enterica serovar Pullorum remains a major economic problem for the poultry industries of countries with no efficient control measures, we presented a multidrug resistance strain S06004 (isolated from a clinically sick chicken in China in 2006) for genome sequencing. The genome comparison showed that the strain contained two prophages, the ST104 and prophage-4 (Fels2) of E. coli LF82, which were not detected in the only published genomes of S. Pullorum RKS5078 and CDC1983-67. In addition, the GyrA Ser83 point mutation, drugresistant genes, and many antibiotic pump systems that are present in S06004 may be contributing to the multidrug resistance of this strain.

항암제 내성 유방암 MCF7/adR 세포주에 대한 보정방암탕과 홍삼산성다당체의 세포고사 유도효과 (Apoptotic Effect of Ethanol Extracts of Bojungbangamtang and Acidic Polysaccharide of Korea Red Ginseng in a MCF7/adR Multidrug-resistance Breast Cancer Cells)

  • 안귀인;박철환;이은옥;이효정;이재호;김관현;이연희;장유성;김상태;김성훈
    • 약학회지
    • /
    • 제50권4호
    • /
    • pp.272-277
    • /
    • 2006
  • This study was undertaken to determine whether the 9 herbal complex induces apoptosis in human breast cancer MCF-7 cells and adriamycin-resistant MCF7/adR cells. Ethanol extracts of Bojungbangamtang (BBTE) and acidic polysaccharide of Red Ginseng (GIN) induced cell death in both MCF-7 and MCF7/adR cells. Ethanol extracts of Bojungbangamtang and acidic polysaccharide of Red Ginseng also induced $G_2/M$ cell cycle arrest and increased TUNEL positive cells in MCF7/adR cells. In addition, flow cytometric analysis revealed the decreased expression of P-glycoprotein (P-gp) in ethanol extracts of Bojungbangamtang and acidic polysaccharide of Red Ginseng treated MCF7/adR cells. Similarly, decreased protein levels of P-glycoprotein and multidrug resistance associated proteins-1 were also determined by immunocytometry in ethanol extracts of Bojungbangamtang treated MCF7/adR cells. Taken together these data indicate that ethanol extracts of Bojungbangamtang and acidic polysaccharide of Red Ginseng inhibit the function of ABC transporters such as multi drug resistance associated proteins (MRPs) and P-glycoprotein as well as induce apoptosis in MCF7/adR cells. Thus, these data suggest that ethanol extracts of Bojungbangamtang and polysaccharide of Red Ginseng can be candidates for the treatment of multidrug-resistant MCF7/adR cells.

Complete genome sequence of Salmonella enterica strain K_SA184, multidrug resistance bacterium isolated from lamb (Ovis aries)

  • Kim, Hyeri;Cho, Jae Hyoung;Cho, Jin Ho;Song, Minho;Shin, Hakdong;Kim, Sheena;Kim, Eun Sol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.194-197
    • /
    • 2021
  • Salmonella enterica is a representative foodborne pathogen in the world. The S. enterica strain K_SA184 was isolated from the lamb (Ovis aries), which was collected from a local traditional market in South Korea. In this study, the S. enterica strain K_SA184 was sequenced using PacBio RS II and Illumina NextSeq 500 platforms. The final complete genome of the S. enterica strain K_SA184 consist of one circular chromosome (4,725,087 bp) with 52.3% of guanine + cytosine (G + C) content, 4,363 of coding sequence (CDS), 85 of tRNA, and 22 of rRNA genes. The S. enterica strain K_SA184 genome includes encoding virulence genes, such as Type III secretion systems and multidrug resistance related genes.

LncRNA MEG3 Regulates Imatinib Resistance in Chronic Myeloid Leukemia via Suppressing MicroRNA-21

  • Zhou, Xiangyu;Yuan, Ping;Liu, Qi;Liu, Zhiqiang
    • Biomolecules & Therapeutics
    • /
    • 제25권5호
    • /
    • pp.490-496
    • /
    • 2017
  • Imatinib resistance has become a major clinical problem for chronic myeloid leukemia. The aim of the present study was to investigate the involvement of MEG3, a lncRNA, in imatinib resistance and demonstrate its underlying mechanisms. RNAs were extracted from CML patients' peripheral blood cells and human leukemic K562 cells, and the expression of MEG3 was measured by RT-qPCR. Cell proliferation and cell apoptosis were evaluated. Western blotting was used to measure the protein expression of several multidrug resistant transporters. Luciferase reporter assay was performed to determine the binding between MEG3 and miR-21. Our results showed that MEG3 was significantly decreased in imatinib-resistant CML patients and imatinib-resistant K562 cells. Overexpression of MEG3 in imatinib-resistant K562 cells markedly decreased cell proliferation, increased cell apoptosis, reversed imatinib resistance, and reduced the expression of MRP1, MDR1, and ABCG2. Interestingly, MEG3 binds to miR-21. MEG3 and miR-21 were negatively correlated in CML patients. In addition, miR-21 mimics reversed the phenotype of MEG3-overexpression in imatinib-resistant K562 cells. Taken together, MEG3 is involved in imatinib resistance in CML and possibly contributes to imatinib resistance through regulating miR-21, and subsequent cell proliferation, apoptosis and expression of multidrug resistant transporters.

Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China

  • Hu, Yuanqing;Li, Fengxia;Zheng, Yixian;Jiao, Xinan;Guo, Liqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.856-867
    • /
    • 2020
  • Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42℃, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.

Decreased Interaction of Raf-1 with Its Negative Regulator Spry2 as a Mechanism for Acquired Drug Resistance

  • Ahn, Jun-Ho;Kim, Yun-Ki;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.174-180
    • /
    • 2011
  • Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance to paclitaxel in v-H-ras transformed NIH 3T3 fibroblasts (Ras-NIH 3T3). We established a multidrug-resistant cell line (Ras-NIH 3T3/Mdr) from Ras-NIH 3T3 cells by stepwise increases in paclitaxel. Drug sensitivity assays indicated that the $IC_{50}$ value for drug-resistant Ras-NIH 3T3/Mdr cells was more than 1 ${\mu}M$ paclitaxel, 10- or more-fold higher than for the parental Ras-NIH 3T3 cells. Western blot and RT-PCR analysis showed that the drug efflux pump a P-glycoprotein were highly expressed in Ras-NIH 3T3/Mdr cells, while not being detectable in Ras-NIH 3T3 cells. Additionally, verapamil, which appears to inhibit drug efflux by acting as a substrate for P-glycoprotein, completely reversed resistance to paclitaxel in Ras-NIH 3T3/Mdr cell line, indicating that resistance to paclitaxel is associated with overexpression of the multidrug resistance gene. Interestingly, Ras-NIH 3T3/Mdr cells have higher basal Raf-1 activity compared to Ras-NIH 3T3 cells. Unexpectedly, however, the colocalization of Raf-1 and its negative regulator Spry2 was less observed in cytoplasm of Ras-NIH 3T3/Mdr cells due to translocation of Spry2 around the nucleus in the perinuclear zone, implying that Raf-1 may be released from negative feedback inhibition by interacting with Spry2. We also showed that shRNA-mediated knockdown of Raf-1 caused a moderate increase in cell susceptibility to paclitaxel. Thus, the results presented here suggest that a Raf-1-dependent pathway plays an important role in the development of acquired drug-resistance.