Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.2.174

Decreased Interaction of Raf-1 with Its Negative Regulator Spry2 as a Mechanism for Acquired Drug Resistance  

Ahn, Jun-Ho (Division of Life Sciences, College of Natural Sciences, University of Incheon)
Kim, Yun-Ki (Division of Life Sciences, College of Natural Sciences, University of Incheon)
Lee, Michael (Division of Life Sciences, College of Natural Sciences, University of Incheon)
Publication Information
Biomolecules & Therapeutics / v.19, no.2, 2011 , pp. 174-180 More about this Journal
Abstract
Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance to paclitaxel in v-H-ras transformed NIH 3T3 fibroblasts (Ras-NIH 3T3). We established a multidrug-resistant cell line (Ras-NIH 3T3/Mdr) from Ras-NIH 3T3 cells by stepwise increases in paclitaxel. Drug sensitivity assays indicated that the $IC_{50}$ value for drug-resistant Ras-NIH 3T3/Mdr cells was more than 1 ${\mu}M$ paclitaxel, 10- or more-fold higher than for the parental Ras-NIH 3T3 cells. Western blot and RT-PCR analysis showed that the drug efflux pump a P-glycoprotein were highly expressed in Ras-NIH 3T3/Mdr cells, while not being detectable in Ras-NIH 3T3 cells. Additionally, verapamil, which appears to inhibit drug efflux by acting as a substrate for P-glycoprotein, completely reversed resistance to paclitaxel in Ras-NIH 3T3/Mdr cell line, indicating that resistance to paclitaxel is associated with overexpression of the multidrug resistance gene. Interestingly, Ras-NIH 3T3/Mdr cells have higher basal Raf-1 activity compared to Ras-NIH 3T3 cells. Unexpectedly, however, the colocalization of Raf-1 and its negative regulator Spry2 was less observed in cytoplasm of Ras-NIH 3T3/Mdr cells due to translocation of Spry2 around the nucleus in the perinuclear zone, implying that Raf-1 may be released from negative feedback inhibition by interacting with Spry2. We also showed that shRNA-mediated knockdown of Raf-1 caused a moderate increase in cell susceptibility to paclitaxel. Thus, the results presented here suggest that a Raf-1-dependent pathway plays an important role in the development of acquired drug-resistance.
Keywords
Paclitaxel; Raf-1; MDR; Chemotherapy; Spry2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Weinstein-Oppenheimer, C. R., Henriquez-Roldan, C. F., Davis, J. M., Navolanic, P. M., Saleh, O. A., Steelman, L. S., Franklin, R. A., Robinson, P. J., McMahon, M. and McCubrey, J. A. (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin. Cancer Res. 7, 2898-2907.
2 Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93-105.   DOI
3 Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W., Mischak, H., Sedivy, J. M. and Kolch, W. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173-177.   DOI
4 Yusa, K. and Tsuruo, T. (1989) Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49, 5002-5006.
5 Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S., Lim, J., Lo, T. L., Leong, H. F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201.   DOI
6 Zhong, J., Troppmair, J. and Rapp, U. R. (2001) Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20, 4807-4816.   DOI
7 Kim, S. H., SH, L., NH, K., CD, K. and BS, C. (1996) Effect of the activated Raf protein kinase on the human multidrug resistance 1 (MDR1) gene promoter. Cancer Lett. 98, 199-205.   DOI
8 Lee, L. F., Haskill, J. S., Mukaida, N., Matsushima, K. and Ting, J. P. (1997) Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter. Mol. Cell. Biol. 17, 5097-5105.
9 Lee, M. (2006) Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochem. Biophys. Res. Commun. 350, 450-456.   DOI
10 Lee, M., Ahn, J. H. and Eum, K. H. (2009) The differences in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res. Treat. 41, 93-99.   DOI
11 Lee, M., Koh, W. S. and Han, S. S. (2003) Down-regulation of Raf-1 kinase is associated with paclitaxel resistance in human breast cancer MCF-7/Adr cells. Cancer Lett. 193, 57-64.   DOI
12 Nobili, S., Landini, I., Giglioni, B. and Mini, E. (2006) Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 7, 861-879.   DOI
13 Marshall, M. S. (1995) Ras target proteins in eukaryotic cells. FASEB J. 9, 1311-1318.
14 McGrogan, B. T., Gilmartin, B., Carney, D. N. and McCann, A. (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta 1785, 96-132.
15 Mercer, K. E. and Pritchard, C. A. (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653, 25-40.
16 Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., Kuriyama, M., Saito, N., Shibuya, M. and Yoshimura, A. (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat. Cell Biol. 5, 427-432.   DOI
17 Cornwell, M. M. and Smith, D. E. (1993) A signal transduction pathway for activation of the mdr1 promoter involves the proto-oncogene c-raf kinase. J. Biol. Chem. 268, 15347-15350.
18 Davis, J. M., Navolanic, P. M., Weinstein-Oppenheimer, C. R., Steelman, L. S., Hu, W., Konopleva, M., Blagosklonny, M. V., McCubrey, J. A. (2003) Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clin. Cancer Res. 9, 1161-1170.
19 Dong, Y., Shao, S., Hu, J. and Yang, P. (2009) Reversal effect of Raf-1/Mdr-1 siRNAs co-transfection on multidrug resistance in KBv200 cell line. Oral Oncol. 45, 991-997.   DOI
20 Gottesman, M. M. (2002) Mechanisms of cancer drug resistanace. Annu. Rev. Med. 53, 615-627.   DOI
21 Gupta, K. P., Ward, N. E., Gravitt, K. R., Bergman, P. J. and O'Brian, C. A. (1996) Partial reversal of multidrug resistance in human breast cancer cells by an N-myristoylated protein kinase C-alpha pseudosubstrate peptide. J. Biol. Chem. 271, 2102-2111.   DOI
22 Jazirehi, A. R., Vega, M. I., Chatterjee, D., Goodglick, L. and Bonavida, B. (2004) Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab. Cancer Res. 64, 7117-7126.   DOI
23 Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263.   DOI
24 Haldar, S., Chintapalli, J. and Croce, C. M. (1996) Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56, 1253-1255.
25 Jaffrezou, J. P., Herbert, J. M., Levade, T., Gau, M. N., Chatelain, P. and Laurent, G. (1991) Reversal of multidrug resistance by calcium channel blocker SR33557 without photoaffinity labeling of P-glycoprotein. J. Biol. Chem. 266, 19858-19864.
26 Abrams, S. L., Steelman, L. S., Shelton, J. G., Wong, E. W., Chappell, W. H., Basecke, J., Stivala, F., Donia, M., Nicoletti, F., Libra, M., Martelli, A. M. and McCubrey, J. A. (2010) The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle 9, 1781-1791.   DOI
27 Ahn, J. H., Eum, K. H. and Lee, M. (2009) The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol. Cell. Biochem. 332, 189-197.   DOI
28 Callaghan, R. and Higgins, C. F. (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br. J. Cancer 71, 294-299.   DOI
29 Ahn, J. H., Eum, K. H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211.   과학기술학회마을   DOI
30 Blobe, G. C., Sachs, C. W., Khan, W. A., Fabbro, D., Stabel, S., Wetsel, W. C., Obeid, L. M., Fine, R. L. and Hannun, Y. A. (1993) Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. Functional significance of enhanced expression of PKC alpha. J. Biol. Chem. 268, 658-664.
31 Chatterjee, D., Bai, Y., Wang, Z., Beach, S., Mott, S., Roy, R., Braastad, C., Sun, Y., Mukhopadhyay, A., Aggarwal, B. B., Darnowski, J., Pantazis, P., Wyche, J., Fu, Z., Kitagwa, Y., Keller, E. T., Sedivy, J. M. and Yeung, K. C. (2004) RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J. Biol. Chem. 279, 17515-17523.   DOI