Browse > Article

Investigation of ${\beta}$-Lactamase-producing Multidrug-resistant Pseudomonas aeruginosa Isolated from Non-Tertiary Care Hospitals in Korea  

Sohn, Eui-Suk (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Yoo, Jeong-Sik (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Lee, Jeom-Kyu (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Lee, Kyeong-Min (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Chung, Gyung-Tae (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Shin, Eun-Shim (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Han, Sun-Young (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Lee, Sang-Hee (Department of Biological Sciences, School of Biotechnology and Environmental Engineering, Myongji University)
Kim, Joon (Department of Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Lee, Yeong-Seon (Division of Antimicrobial Resistance, Center for Infectious Disease Research, National Institute of Health)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.10, 2007 , pp. 1733-1737 More about this Journal
Abstract
A total of 2,280 nonduplicate clinical isolates of Pseudomonas aeruginosa, obtained nationwide from Korean non-tertiary care hospitals from 2002 to 2005, were identified and their susceptibilities to aminoglycosides, antipseudomonal penicillins, carbapenems, cephalosporins, monobactams, and quinolones were studied, together with their production of ${\beta}$-lactamases. Using disk diffusion and minimum inhibitory concentration tests, it was found that 2.9% of isolates were multidrug-resistant (MDR) P. aeruginosa. An EDTA-disk synergy test, PCR amplification with specifically designed primers, and direct sequencing of the PCR products showed that the $bla_{OXA-10}$, $bla_{VIM-2}$, $bla_{OXA-2}$, $bla_{OXA-17}$, $bla_{PER-1}$, $bla_{SHV-12}$, and $bla_{IMP-1}$ genes were carried by 34.3%, 26.9%, 3.0%,3.0%, 1.5%, 1.5%, and 1.5% of 67 MDR P. aeruginosa isolates, respectively. The prevalence of MDR P. aeruginosa was three-fold higher, compared with that from the United States. More than two types of ${\beta}$-lactamase genes were carried by 10.4% of isolates. The most prevalent ${\beta}$-lactamase genes were $bla_{VIM-2}$ and $bla_{OXA-10}$. This study is the first description of MDR P. aeruginosa trom non-tertiary care hospitals in Korea and the coexistence of the $bla_{VIM-2}$, $bla_{IMP-1}$, or $bla_{PER-1} in these clinical isolates.
Keywords
Multidrug resistance; Pseudomonas aeruginosa; VIM-2; OXA-10; PER-1;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, S. H., J. Y. Kim, G. S. Lee, S. H. Cheon, Y. J. An, S. H. Jeong, and K. J. Lee. 2002. Characterization of $bla_{CMY-11}$, an AmpC-type plasmid-mediated $\beta$-lactamase gene in a Korean clinical isolate of Escherichia coli. J. Antimicrob. Chemother. 49: 269-273   DOI   ScienceOn
2 Partridge, S. and R. M. Hall. 2003. In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrob. Agents Chemother. 47: 342-349   DOI
3 Trick, W. E., C. M. Kioski, K. M. Howard, G. D. Cage, J. I. Tokars, B. M. Yen, and W. R. Jarvis. 2000. Outbreak of Pseudomonas aeruginosa ventriculitis among patients in a neurosurgical intensive care unit. Infect. Control Hosp. Epidemiol. 21: 204-208   DOI   ScienceOn
4 Lee, S. H., J. Y. Kim, S. K. Lee, W. Jin, and K. J. Lee. 2000. Discriminatory detection of extended-spectrum $\beta$-lactamases by restriction fragment length dimorphism-polymerase chain reaction. Lett. Appl. Microbiol. 31: 307-312   DOI   ScienceOn
5 Obritsch, M. D., D. N. Fish, R. MacLaren, and R. Jung. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48: 4606-4610   DOI   ScienceOn
6 Sekiguchi, J. I., T. Asagi, T. Miyoshi-Akiyama, A. Kasai, Y. Mizuguchi, M. Araake, T. Fujino, H. Kikuchi, S. Sasaki, H. Watari, T. Kojima, H. Miki, K. Kanemitsu, H. Kunishima, Y. Kikuchi, M. Kaku, H. Yoshikura, T. Kuratsuji, and T. Kirikae. 2007. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J. Clin. Microbiol. 45: 979-989   DOI   ScienceOn
7 Ferrara, A. M. 2006. Potentially multidrug-resistant nonfermentative Gram-negative pathogens causing nosocomial pneumonia. Int. J. Antimicrob. Agents 27: 183-195   DOI   ScienceOn
8 Falagas, M. E., P. K. Koletsi, and I. A. Bliziotis. 2006. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 55: 1619-1629   DOI   ScienceOn
9 Hsu, D. I., M. P. Okamoto, R. Murthy, and A. Wong-Beringer. 2005. Fluoroquinolone-resistant Pseudomonas aeruginosa: Risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother. 55: 535-541   DOI   ScienceOn
10 Shin, H.-J., S.-K. Lee, J. J. Choi, S. Koh, J.-H. Lee, S.-J. Kim, and S. T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367   과학기술학회마을
11 Lodise, T. P., C. D. Miller, J. Graves, J. P. Furuno, J. C. McGregor, B. Lomaestro, E. Graffunder, and L. A. McNutt. 2007. Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance. Antimicrob. Agents Chemother. 51: 417-422   DOI
12 Jeong, S. H., I. K. Bae, S. G. Sohn, K. O. Park, Y. J. An, K. H. Sung, S. J. Jang, M. J. Heo, K. S. Yang, and S. H. Lee. 2006. First detection of $bla_{IMP-1}$ in clinical isolate multiresistant Acinetobacter baumannii from Korea J. Microbiol. Biotechnol. 16: 1377-1383   과학기술학회마을
13 Lee, K., Y. Chong, H. B. Shin, Y. A. Kim, D. Young, and J. H. Yum. 2000. Modified Hodge and EDTA-disk synergy tests to screen metallo-$\beta$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7: 88-102
14 Baddour, L. M., D. V. Hicks, M. M. Tayidi, S. K. Roberts, E. Walker, R. J. Smith, D. S. Sweitzer, J. A. Herrington, and B. G. Painter. 1995. Risk factor assessment for the acquisition of fluoroquinolone-resistant isolates of Pseudomonas aeruginosa in a community-based hospital. Microb. Drug Resist. 1: 219-222   DOI
15 Gales, A. C., R. N. Jones, J. Turnidge, R. Rennie, and R. Ramphal. 2001. Characterization of Pseudomonas aeruginosa isolates: Occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY antimicrobial surveillance program, 1997-1999. Clin. Infect. Dis. 32: S146-S155
16 Weldhagen, G. F., B. Kim, C.-H. Cho, and S. H. Lee. 2006. Definitive nomenclature of GES/IBC-type extended-spectrum $\beta$-lactamases. J. Microbiol. Biotechnol. 16: 1837-1840   과학기술학회마을
17 Leibovici, L., I. Shraga, M. Drucker, H. Konigsberger, Z. Samra, and S. D. Pitlik. 1998. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 244: 379-386   DOI   ScienceOn
18 Vahaboglu, H., R. Ozturk, H. Akbal, S. Saribas, O. Tansel, and F. Coskunkan. 1998. Practical approach for detection and identification of OXA-10-derived ceftazidime hydrolyzing extended-spectrum beta-lactamases. J. Clin. Microbiol. 36: 827-829
19 Cho, B. G., C. H. Kim, B. K. Lee, and S. H. Cho. 2005. Comparison of antibiotic resistance of blood culture strains and saprophytic isolates in the presence of biofilms, formed by the intercellular adhesion (ica) gene cluster in Staphylococcus epidermidis. J. Microbiol. Biotechnol. 15: 728-733   과학기술학회마을
20 Chastre, J. and J. L. Trouillet. 2000. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin. Respir. Infect. 15: 287-298   DOI   ScienceOn
21 Clinical and Laboratory Standards Institute (CLSI). 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A6, 7th Ed. Clinical and Laboratory Standards Institute, Wayne, PA, U.S.A
22 Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.-D. Cavallo, and P. Nordmann. 2000. Characterization of VIM- 2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44: 891-897   DOI
23 Kiska, D. L. and P. H. Gilligan. 1999. Pseudomonas, pp. 517-525. In P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken (eds.), Manual of Clinical Microbiology, 7th Ed. American Society for Microbiology, Washington, DC, U.S.A
24 Lee, S., Y. J. Park, M. Kim, H. K. Lee, K. Han, C. S. Kang, and M. W. Kang. 2005. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J. Antimicrob. Chemother. 56: 122-127   DOI   ScienceOn
25 Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa. Our worst nightmare? Clin. Infect. Dis. 34: 634-640   DOI   ScienceOn
26 Poirel, L., L. Cabanne, H. Vahaboglu, and P. Nordmann. 2005. Genetic environment and expression of the extendedspectrum $\beta$-lactamase $bla_PER-1}$ gene in Gram-negative bacteria. Antimicrob. Agents Chemother. 49: 1708-1713   DOI   ScienceOn