• 제목/요약/키워드: Multidrug-resistance

검색결과 391건 처리시간 0.029초

중환자실 간호사의 다제내성균 감염관리 수행에 영향을 미치는 요인 (The Factors Influencing Compliance of Multidrug-resistant Organism Infection Control in Intensive Care Units Nurses)

  • 김지희;임경희
    • 성인간호학회지
    • /
    • 제27권3호
    • /
    • pp.325-336
    • /
    • 2015
  • Purpose: This study was conducted to identify factors influencing compliance of multidrug-resistant organism infection control in intensive care units (ICU) nurses. Methods: Data were collected from 254 ICU nurses who were working at 6 general and advanced general hospitals in D city and G Province. Results: 77.2% and 84.4% of the subjects correctly answered to questions about Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococcus (VRE), respectively. The scores of MRSA infection control compliance and VRE infection control compliance were 3.41 and 3.43, respectively. The factors influencing MRSA infection control compliance were empowerment, environmental safety recognition, and education satisfaction, which explained 30% of MRSA infection control compliance. The factors significantly related to VRE infection control compliance were empowerment, hospital types, environmental safety recognition, number of education sessions, and neonatal ICU, which explained 37% of VRE infection control compliance. Conclusion: It is necessary to develop efficient educational programs for infection control including educational contents to improve empowerment and environmental safety recognition of nurses. Furthermore, administrative support for those infection control programs is also necessary.

Multidrug-resistance reversing activity of the local Citrus fruits in Jeju Island, Korea

  • Lee, Sook-Young;Kim, Sun-Min;Hwang, Eun-Ju
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2005년도 춘계 학술발표대회
    • /
    • pp.41-51
    • /
    • 2005
  • We examined whether extracts from 14 local citrus spp. on Jeju Island (Korea) contained chemosensitizing activity that would increase the cytotoxic effect of vincristine(VCR) in drug-resistant cancer cells. We report that methanol extracts from fruits and flowers of some species had a chemosensitizing effect that reversed P-glycoprotein (Pgp)-mediated multidrug resistance (MDR). Using drug-sensitive AML-2/WT and drug-resistant AML-2/D100 in the absence of VCR in human acute myelogenous leukemia cells we found that fruit or flower extracts alone generally had low cytotoxicity $(IC_{50}>200\;{\mu}g/ml)$. In studies examining the effect of extracts on 120 ng/ml VCR cytotoxicity in drug-resistant AML-2/D100 cells, we found that immature fruit extracts had greater chemosensitizing activity than either extracts from mature fruit or flower. Of the 14 species examined, the immature fruit extract from Inchangkyool (Citrus ichangiensis) showed the hishest chemosensitizing index(CI) valus. Immature fruit extracts of Hongkyool(C. tachibana), Byungkyool(C. platymamma), Cheongkyool(C. nippokoreana) and Jinkyool (C. sunki) also strongly potentiated VCR cytotoxicity in AML-2/D100 cells. The chemosensitizing effect of peel extracts was 2-10-fold that of whole fruit extracts from Hongkyool (C. tachibana), Byungkyool (C. platymamma) and Inchangkyool (C. inchangiensis). The CI values for flower extracts were higher than those for mature fruit extracts, but lower than those for immature fruit extracts. These results indicate that immature citrus fruits contain compounds that do not exert their activity solely through cytotoxicity. In particular, Incahngkyool (C. inchangiensis), Byungkyool(C.platymamma), Cheongkyool(C. nippokoreana) and Hongkyool (C. tahibana) may be useful sources of chemosensitizing compounds.

  • PDF

Ginsenoside Rg3의 항암효능 연구의 진보 (Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3)

  • 남기열;최재을;홍세철;표미경;박종대
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

인체 자궁암 세포에서 천연 성분이 P-당단백질의 활성에 미치는 영향 (Effect of Natural Compounds on P-glycoprotein Activity in Human Uterine Sarcoma Cells)

  • 정수연;고은정;김나형;성민경;장정옥;이화정
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권4호
    • /
    • pp.249-254
    • /
    • 2005
  • Multidrug resistance (MDR) of cancer cells is, at least in part, associated with the overexpression of P-glycoprotein (P-gp). Many studies have demonstrated that natural compounds obtained from fruits, vegetables, teas and medicinal plants may modulate P-gp activity. The objective of the present investigation was to examine the effect of seven natural compounds on the P-gp activity in human uterine sarcoma cell line, MES-SA/DX5. Daunomycin uptake was significantly increased by biochanin A and silymarin (p<0.0001) whereas it was reduced by morin (p<0.01). The efflux of daunomycin from the cells was significantly inhibited by biochanin A, morin, cephalotaxine, berberine (p<0.05) and silymarin (p<0.0001). Biochanin A, berberine and silymarin significantly decreased $IC_{50}$ value of daunomycin (p<0.05) while morin increased it (p<0.05). These results suggest that some natural compounds such as biochanin A and silymarin may inhibit P-gp function and can be developed as MDR reversing agents to improve the efficacy of chemotherapeutic drugs when administered concomitantly.

Role of Caveolin-1 in Indomethacin-induced Death of Human Hepato-adenocarcinoma SK-Hep1 Cells

  • Kim, Kyung-Nam;Kang, Ju-Hee;Yim, Sung-Vin;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.143-148
    • /
    • 2008
  • Caveolin-1 (CAV1) is an integral membrane protein that may function as a scaffold for plasma membrane proteins and acts as a tumor suppressor protein. One causative factor of chemotherapy-resistant cancers is P-plycoprotein (P-gp), the product of the multidrug resistance-1 gene (MDR1), which is localized in the caveolar structure. Currently, the interactive roles of CAV1 and MDR1 expression in the death of cancer cells remain controversial. In this study, we investigated the effects of indomethacin on the cell viability and the expression levels of MDR1 mRNA and protein in a CAV1-siRNA-mediated gene knockdown hepatoma cell line (SK-Hep1). Cell viability was significantly decreased in CAV1-siRNA-transfected cells compared with that of control-siRNA-transfected cells. Furthermore, the viability of cells pretreated with CAV1 siRNA was markedly decreased by treatment with indomethacin (400${\mu}$M for 24 h). However, the protein and mRNA levels of MDR1 were unchanged in CAV1-siRNA-transfected cells. These results suggest that CAV1 plays an important role as a major survival enzyme in cancer cells, and indomethacin can sensitively induce cell death under conditions of reduced CAV1 expression, independent of MDR1 expression.

Multidrug resistance reversal in mouse lymphoma cells by indian tea leaves, indian coffee seeds and chicory

  • Rao, Bhattiproulu Kesava;Motohashi, Noboru;Kawase, Masami;Spengler, Gabriella;Molnar, Joseph
    • Advances in Traditional Medicine
    • /
    • 제3권2호
    • /
    • pp.100-105
    • /
    • 2003
  • Systematic analysis of caffeine from the commercial samples of Indian tea leaves was performed by a routine method and the content of caffeine was found to be 19.0-37.4 mg/100 g leaves. The caffeine contents from coffee seeds and chicory from Indian origin were analyzed and found to be 0.6540-1.4920 g/100 g seeds. Caffeine contents of roasted Indian chicory roots were lower than either those of Indian tea leaves or Indian coffee seeds. The multidrug resistance (MDR) reversing effects were tested on a mouse leukemia cell line of L-5178 cells by methanol extracts [M1-M15] of Indian tea leaves and coffee seeds, comparing to a control of $({\pm})-verapamil$. The effects were measured by fluorescence ratio between treated and untreated group cells. Among fifteen methanol extracts, a Gemini tea [M6] (fluorescence activity ratio 5.26) had the most potent effect for L-5178 cells. The extract M6 was 0.63-fold of $({\pm})-verapamil$. We suggest that one of mechanisms of reversal by M6 might have strong affinity to dopamine $D_1$ and D_2$ receptors. Further studies with many more tumor and normal cell lines are necessary to confirm the MDR reversal specificity of coffee methanol extracts.

AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis

  • Xu, Lingling;Wu, Jie;Li, Nini;Jiang, Chengjun;Guo, Yan;Cao, Peng;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.481-492
    • /
    • 2020
  • The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.

Alteration of MRP2 expression and the graft outcome after liver transplantation

  • Yi, Nam-Joon;Kim, Joohyun;Choi, YoungRok;Kim, Heyoung;Lee, Kyoung Bun;Jang, Ja-June;Lee, Jae Young;Lee, Jeong Min;Han, Joon Koo;Lee, Kwang-Woong;Suh, Kyung-Suk
    • Annals of Surgical Treatment and Research
    • /
    • 제95권5호
    • /
    • pp.249-257
    • /
    • 2018
  • Purpose: Multidrug resistance-associated protein (MRP) 2 is a glutathione conjugate in the canalicular membrane of hepatocytes. Early graft damage after liver transplantation (LT) can result in alteration of MRP2 expression. The purpose of this study was to evaluate the relationship between the pattern of MRP2 alteration and graft outcome. Methods: Forty-one paraffin-embedded liver graft tissues obtained by protocol biopsy within 2 months after LT; these were stained using monoclonal antibodies of MRP2. We selected 15 live donor biopsy samples as a control, that showed homogenous canalicular staining for MRP2. The pattern of canalicular MRP2 staining of graft was classified into 3 types: homogenous (type C0), focal (type C1), and no (type C2,) staining of the canaliculi. Results: In total, 17.1% graft tissues were type C0, 36.6% were type C1, and 46.3% were type C2. The median operation time was longer in patients with type C2 (562.6 minutes) than in patients with type C0 (393.8 minutes) (P = 0.038). The rates of posttransplant complications were higher in patients with type C2 (100%) than in patients with type C0 (42.9%) and C1 (73.3%) (P < 0.001). Conclusion: MRP2 expression pattern was altered in 82.9% after LT. The pattern of MRP2 alteration was associated with longer operation time and higher rates of post-LT complications.

다양한 발효액의 항균효과와 대장균의 유전적 변화에 미치는 영향 (Antibacterial Effect of Various Fermentation Products and Identification of Differentially Expressed Genes of E.coli)

  • 허지혜
    • 대한임상검사과학회지
    • /
    • 제54권2호
    • /
    • pp.119-124
    • /
    • 2022
  • 녹농균(Pseudomonas aeruginosa), 대장균(Escherichia coli) 및 포도알균(Staphylococcus aureus)은 기회감염균이다. 또한 이들 세균은 다제내성(Multiple-Drug Resistance, MDR) 세균의 성질을 가지는 것으로 알려져 있다. 녹농균, 대장균, 포도알균에 대한 다양한 효능을 지닌 6가지 발효액의 항균활성을 분석하였다. 발효액을 섭취했을 때 대장균에서 유전적 발현 변화가 일어나는지 알아보기 위해 annealing control primer를 사용하여 유전자발현 분석을 수행하였다. 디스크확산법을 통해 무화과식초와 대봉감식초가 다른 발효액에 비해 억제대의 크기가 가장 크게 나타났고, 토종약초발효소는 항균효과가 없었다. 대장균에 5% 무화과식초를 처리하여 21일간 매일 계대배양하여 Escherichia coli O157:H7 OmpW gene for outer membrane protein W 유전자 발현이 감소하며, Synthetic construct Lao1 gene for L-amino acid oxidase, complete cds 유전자가 발현이 증가함을 확인하였다. 발효액 중에서 특히 무화과식초를 섭취하는 것은 우리 주변에 항상 존재하는 대장균에 대해 방어능력을 더욱 단단하게 가질 수 있음을 의미하며, 나아가 다제내성균에 대한 천연치료제로 유용하게 쓰일 수 있기를 기대한다.

Susceptibility of β-Lactam Antibiotics and Genetic Mutation of Drug-Resistant Mycobacterium tuberculosis Isolates in Korea

  • Park, Sanghee;Jung, Jihee;Kim, Jiyeon;Han, Sang Bong;Ryoo, Sungweon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권3호
    • /
    • pp.256-263
    • /
    • 2022
  • Background: Mycobacterium tuberculosis (Mtb) is resistant to the β-lactam antibiotics due to a non-classical transpeptidase in the cell wall with β-lactamase activity. A recent study showed that meropenem combined with clavulanate, a β-lactamase inhibitor, was effective in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). However, in Korea, clavulanate can only be used as drugs containing amoxicillin. In this study, we investigated the susceptibility and genetic mutations of drug-resistant Mtb isolates to amoxicillin-clavulanate and meropenem-clavulanate to improve the diagnosis and treatment of drug-resistant TB patients. Methods: The minimum inhibitory concentration (MIC) of amoxicillin-clavulanate and meropenem-clavulanate was examined by resazurin microtiter assay. We used 82 MDR and 40 XDR strains isolated in Korea and two reference laboratory strains. Mutations of drug targets blaC, blaI, ldtA, ldtB, dacB2, and crfA were analyzed by polymerase chain reaction and DNA sequencing. Results: The MIC90 values of amoxicillin/clavulanate and meropenem/clavulanate in drug-resistant Mtb isolates were 64/2.5 and 16/2.5 mg/L, respectively. Gene mutations related to amoxicillin/clavulanate and meropenem/clavulanate resistance could not be identified, but T448G mutation was found in the blaC gene related to β-lactam antibiotics' high susceptibility. Conclusion: Our results provide clinical consideration of β-lactams in treating drug-resistant TB and potential molecular markers of amoxicillin-clavulanate and meropenem-clavulanate susceptibility.