• 제목/요약/키워드: Multibody System

검색결과 239건 처리시간 0.028초

이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구 (Dual-rotor Wind Turbine Generator System Modeling and Simulation)

  • 조윤모;노태수;민병문;이현화
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.87-95
    • /
    • 2004
  • 본 논문에서는 로터 블레이드, 고/저속 회전축, 발전기, 기어 시스템 등 다수의 몸체가 서로 상대적인 운동을 하며 연결되어 있는 이중 로터 수평축 풍력발전 시스템을 다몸체 시스템으로 간주하고, 다몸체 역학을 이용한 풍력발전 시스템 모델링 기업을 제안하였다. 이를 기반으로 풍력발전 시스템의 성능 해석을 위한 시뮬레이션 소프트웨어 WINSIM을 개발하였고, 다양한 시뮬레이션을 통해 제안된 풍력발전 시스템의 과도 및 정상 상태 특성의 연구에 적용할 수 있음을 예시하였다.

Effect of Bogie Frame Flexibility on Air Gap in the Maglev Vehicle with a Feedback Control System

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.97-102
    • /
    • 2011
  • In an EMS (Electromagnetic suspension)-type Maglev (Magnetically-levitated) vehicle, the flexibility of the bogie frame may affect the acceleration of the electromagnet that is input into the control system, which could lead to instability in some cases. For this reason, it is desirable to consider bogie frame flexibility in air gap simulations, for the optimization of bogie structure. The objective of this paper is to develop a flexible multibody dynamic model of 1/2 of an EMS-type Maglev vehicle that is under testing, and to compare the air gap responses obtained from the rigid and the flexible body model. The feedback control system and electromagnet models that are unique to the EMS-type maglev vehicle must be included in the model. With this model, dynamics simulations are carried out to predict the air gap responses from the two models, of the rigid and flexible model, and the air gaps are compared. Such a comparative study could be useful in the prediction of the air gap in the design stage, and in designing an air gap control system.

  • PDF

소규모 공작기계용 소재공급장치의 이송 셔틀 시스템에 관한 구조해석 (Structural Analysis of a Carriage Shuttle System : A Material Supply Device for Small-Scale Machine Tools)

  • 강대성;정은익;김경희;백일천;이중섭
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.62-68
    • /
    • 2019
  • The aim of this study was to interpret the structure and dynamics of a transfer shuttle system as a material supply device for small machine tools. The following conclusions were obtained by performing a structural interpretation of the material supply equipment with respect to workload and the dynamical interpretation of a flexible multibody carriage shuttle. When a 1,000-kg workload was applied to a fork lift, the safety factor was approximately 1.86. To conservatively assess the integrity of the structure, a 1,000-kg workload would be proper. In the case of a deflection of the fork system, the width increased with increasing time. The greatest deflection occurred at 5.5 s, which was the largest increase in the time point of the fork system.

Need for Accurate Initial Conditions to Simulate Flexible Structures in Motion

  • Woo, Nelson;Ross, Brant;West, Ryan
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.97-106
    • /
    • 2015
  • Flexible structures are often important components of mechanical assemblies in motion. A flexible structure sometimes must go through assembly steps that cause it to be in a pre-stressed condition when in the starting position for operation. A virtual prototype of the assembly must also bring the model of the flexible structure into the same pre-stressed condition in order to obtain accurate simulation results. This case study is presented regarding the simulation of a constant velocity joint, with a focus on the flexible boot. The case study demonstrates that careful definition of the initial conditions of the boot and flexible body contacts yields high-fidelity simulation results.

준역행렬과 투영행렬을 이용한 구속 다물체계의 동역학 해석 (A dynamic analysis for constrained multibody systems using pseudo-inverse and projection matrix)

  • 김외조;유완석
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.170-176
    • /
    • 1998
  • In this paper, the column space and null space of the Jacobian matrix were obtained by using the pseudo-inverse method and projection matrix. The equations of motion of the system were replaced by independent acceleration components using the null space matrix. The proposed method has the following advantages. (1) It is simple to derive the null space. (2) The efficiency is improved by getting rid of constrained force terms. (3) Neither null space updating nor coordinate partitioning method is required. The suggested algorithm is applied to a three-dimensional vehicle model to show the efficiency.

수치미분에 의한 차량 현가장치의 기구학적 민감도 해석 (Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method)

  • 탁태오
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석 (Design and Analysis of a Linear Feeder using Computer Simulation)

  • 이규호;김성현;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

드롭퍼 위치를 고려한 고속전철 전력선과 급전기의 접촉 분리 해석 (Analysis of Contact and Separation between the Catenary and the Pantograph of a High-speed Electrical Train Considering the Dropper Positions)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.427-436
    • /
    • 2007
  • The catenary of a high-speed electrical train is modeled by the finite elements with the upper suspension wire, lower contact wire, and droppers, and the dynamic contact between the catenary and the pantograph is numerically analyzed by solving the whole equations of motion of the pantograph and the catenary system subjected to the contact condition. For the stability of the numerical solution, with the cubic spline interpolation of the catenary displacement, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the various numerical examples, it is shown that the dropper positions as well as the static deflection are crucial to determine the contact and separation of the pantograph of a high-speed train.

다물체동역학 해석 프로그램 CADyna의 제어모듈 개발 (Development of a Control Module in Multibody Dynamics Program CADyna)

  • 김승오;전경진;손정현;유완석
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.106-113
    • /
    • 2002
  • A procedure to model and simulate control systems is presented using CADyna and MATLAB/Simulink computer codes. For the plant modeling, a technique for obtaining the state matrices from CADyna is presented. To obtain state matrices from CADyna models, perturbation theory is used. These state matrices are then used in NATLAB to design a controller for the plant. The controller design can subsequently be incorporated into the CADyna model and its closed loop performance is evaluated. Examples are presented to verify the developed methodology.

Real-Time Analysis of Occupant Motion for Vehicle Simulator

  • Oh, Kwang-Seok;Son, Kwon;Kim, Kwang-Hoon;Oh, Sang-Min;Choi, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.129.2-129
    • /
    • 2001
  • Visual effects are important cues for providing occupant s with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant´s posture, therefore, the total body motion must be considered in a graphic simulator. A real time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and acceleration. A multibody system analysis software, MADYMO, was used in the motion analysis of an adult male dummy in the seated position. Position data of the head were collected as inputs to the viewpoint movement. Based on these data, a back- propagation neural network was ...

  • PDF