• 제목/요약/키워드: Multibody System

검색결과 239건 처리시간 0.025초

ADAMS를 이용한 차량 조종안정성 해석 (An Analysis of Vehicle Handling Characteristics with ADAMS)

  • 조병관;송성재
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.109-118
    • /
    • 1996
  • An analysis of handling characteristics of a vehicle is performed for step and pulse steering input, which may be very useful in suspension design stage. Many developed computer programs for vehicle dynamics require test data of compliance effects for proto type car. Therefore, these programs are not suitable for automobile development stage. Using the raw design data of suspension and steering system, we analyze the vehicle behavior for step and pulse steering input with commercial multibody dynamics program, ADAMS. Simulated results are in good agreement with vehicle test results. Vehicle handling characteristics parameters which are very useful in automobile suspension design are evaluated from the analysis.

  • PDF

A Study on Moored Floating Body using Non-linear FEM Analysis

  • Ku, Namkug
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.25-34
    • /
    • 2018
  • In this study, the behavior of the coupled mooring system and floating body is analyzed. The related works are introduced for the mooring analysis of the floating body. Equations motion are introduced for calculating mooring force connected with the floating body. For formulating the equations of motion, the concept of the constrained force is applied for compact expression of it. The input and output data of the module for calculating mooring force is defined. The static analysis and quasi-static analysis are performed. For the analysis, equilibrium equation for elastic catenary mooring line is used by employing finite element method, and the C# solver is developed in this research. The analysis results are validated by comparing with other research results.

폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석 (Dynamic Analysis of Flexible Mechanical System)

  • 안덕환;이병훈
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

화물차량용 현가계 부품의 피로 수명 예측 (FATIGUE LIFE PREDICTION OF THE PARTS USED IN THE SUSPENSION SYSTEM FOR TRUCKS)

  • 전갑진;박태원;이수호;윤지원;권순기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1051-1056
    • /
    • 2007
  • The air suspension system is widely used in commercial vehicles such as buses or special purpose trucks because it improves ride better than any other types of suspension. Since the durability of vehicle parts is directly related to the safety, the evaluation of the durability at the design stage is necessary. In this research, the fatigue life of the air suspension frame for trucks is predicted by the modal stress recovery(MSR) method. Using the process proposed in this research, the fatigue life of vehicle parts can be predicted efficiently at the design stage.

  • PDF

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

정밀 스테이지의 기구 동역학 해석 (Kinematics and Dynamics Analysis of Precision stage)

  • 주재환;임홍재;장시열;정재일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석 (Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

6×6 자율주행 차량의 실시간 해석을 위한 연구 (A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle)

  • 조두호;이정한;이기창;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

상대 이음 좌표 방법을 이용한 링키지 메카니즘에 대한 동역학적 해석에 관한 연구

  • 이동찬;배대성;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.339-343
    • /
    • 1992
  • For the analysis of dynamic behavior of dynamic behavior of multibody systems by cartesian coordinate method, maximal sets of generalized coordinates and maximum numbers of differential equation and constraints must be considered. Therefore the inefficiency of the increase of CPU time is occurred. This paper is to analyze the dynamic system by using the relative coordinate method without violating the geometric condition of systems. The graph theory and system topology were used for this study. The dynamic systems could be analyzed by the automatic generation of the informations like equation of motion, constraints, and external forces etc. And the results were compared and verified with dynamic commercial package DADS.

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF